文库

Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy

Animportantpartofcharacterizinganyproteinmoleculeistodetermineitssizeandshape.Sedimentationandgelfiltrationarehydrodynamictechniquesthatcanbeusedforthismediumresolutionstructuralanalysis.Thisreviewcollectsanumberofsimplecalculationsthatareusefulforthinkingaboutproteinstructureatthenanometerlevel.ReadersareremindedthatthePerrinequationisgenerallynotavalidapproachtodeterminetheshapeofproteins.Instead,asimpleguidelineispresented,basedonthemeasuredsedimentationcoefficientandacalculatedmaximumS,toestimateifaproteinisglobularorelongated.ItisrecalledthatagelfiltrationcolumnfractionatesproteinsonthebasisoftheirStokesrADIus,notmolecularweight.Themolecularweightcanbedeterminedbycombininggradientsedimentationandgelfiltration,techniquesavailableinmostbiochemistrylaboratories,asoriginallyproposedbySiegelandMonte.Finally,rotaryshadowingandnegativestainelectronmicroscopyarepowerfultechniquesforresolvingthesizeandshapeofsingleproteinmoleculesandcomplexesatthenanometerlevel.Acombinationofhydrodynamicsandelectronmicroscopyisespeciallypowerful.
KeyWords:Proteinshape-hydrodynamics-gelfiltration-sedimentation-electronmicroscopy

Introduction

Mostproteinsfoldintoglobulardomains.Proteinfoldingisdrivenlargelybythehydrophobiceffect,whichseekstominimizecontactofthepolypeptidewithsolvent.Mostproteinsfoldintoglobulardomains,whichhaveaminimalsurfacearea.Peptidesfrom10to30kDatypicallyfoldintoasingledomain.Peptideslargerthan50kDatypicallyformtwoormoredomainsthatareindependentlyfolded.However,someproteinsarehighlyelongated,eitherasastringofsmallglobulardomainsorstABIlizedbyspecializedstructuressuchascoiledcoilsorthecollagentriplehelix.Theultimatestructuralunderstandingofaproteincomesfromanatomic-levelstructureobtainedbyX-raycrystallographyornuclearmagneticresonance.However,structuralinformationatthenanometerlevelisfrequentlyinvaluable.Hydrodynamics,inparticularsedimentationandgelfiltration,canprovidethisstructuralinformation,anditbecomesevenmorepowerfulwhencombinedwithelectronmicroscopy(EM).

Oneguidingprincipleenormouslysimplifiestheanalysisofproteinstructure.Theinteriorofproteinsubunitsanddomainsconsistsofcloselypackedatoms(1).Therearenosubstantialholesandalmostnowatermoleculesintheproteininterior.Asaconsequenceofthis,proteinsarerigidstructures,withaYoung’smodulussimilartothatofPlexiglas(2).EngineerssometimescategorizeBIOLOGyasthescienceof“softwetmaterials”.Thisistrueofsomehydratedgels,butproteinsarebetterthoughtofasharddryplastic.Thisisobviouslyimportantforallofbiology,tohavearigidmaterialwithwhichtoconstructthemachineryoflife.Asecondconsequenceoftheclosepackedinteriorofproteinsisthatallproteinshaveapproximatelythesamedensity,about1.37g/cm3.Formostofthefollowing,wewillusethepartialspecificvolume,v2,whichisthereciprocalofthedensity.v2variesfrom0.70to0.76fordifferentproteins,andthereisaliteratureoncalculatingordeterminingthevalueexperimentally.Forthepresentdiscussion,wewillignorethesevariationsandassumetheaveragev2 = 0.73cm3/g.


HowBigIsaProteinMolecule?
Assumingthispartialspecificvolume(v2 = 0.73cm3/g),wecancalculatethevolumeoccupiedbyaproteinofmassMinDaltonasfollows.
$$V{left( {{	ext{nm}}^{3} } 
ight)} = frac{{{left( {{0.73;,{	ext{cm}}^{3} } mathord{left/ {vphantom {{0.73;,{	ext{cm}}^{3} } {	ext{g}}}} 
ight. kern-
ulldelimiterspace} {	ext{g}}} 
ight)}; 	imes ;{left( {{{	ext{10}}^{{{	ext{21}}}} {	ext{nm}}^{{	ext{3}}} } mathord{left/ {vphantom {{{	ext{10}}^{{{	ext{21}}}} {	ext{nm}}^{{	ext{3}}} } {{	ext{cm}}^{{	ext{3}}} }}} 
ight. kern-
ulldelimiterspace} {{	ext{cm}}^{{	ext{3}}} }} 
ight)}}}{{6.023; 	imes ;10^{{23}} {{	ext{Da}}} mathord{left/ {vphantom {{{	ext{Da}}} {	ext{g}}}} 
ight. kern-
ulldelimiterspace} {	ext{g}}}}; 	imes ;M{left( {{	ext{Da}}} 
ight)} = 1.212; 	imes ;10^{{ - 3}} {left( {{{	ext{nm}}^{3} } mathord{left/ {vphantom {{{	ext{nm}}^{3} } {{	ext{Da}}}}} 
ight. kern-
ulldelimiterspace} {{	ext{Da}}}} 
ight)}; 	imes ;M{left( {{	ext{Da}}} 
ight)}.$$
(2.1)

Theinverserelationshipisalsofrequentlyuseful:M(Da) = 825V(nm3).

Whatwereallywantisaphysicallyintuitiveparameterforthesizeoftheprotein.Ifweassumetheproteinhasthesimplestshape,asphere,wecancalculateitsradius.WewillrefertothisasRmin,becauseitistheminimalradiusofaspherethatcouldcontainthegivenmassofprotein
$$R_{{min }} = {left( {3V/4pi } 
ight)}^{{1/3}} = 0.066M^{{1/3}} {	ext{ (for }}M{	ext{ in Dalton, }}R_{{{	ext{min}}}} {	ext{ in nanometer)}}{	ext{.}}$$
(2.2)
Someusefulexamplesforproteinsfrom5,000to500,000DaaregiveninTable1.
Table1Rminforproteinsofdifferentmass

Itisimportanttoemphasizethatthisistheminimumradiusofasmoothspherethatcouldcontainthegivenmassofprotein.Sinceproteinshaveanirregularsurface,evenonesthatareapproximatelysphericalwillhaveanaverageradiuslargerthantheminimum.


HowFarApartAreMoleculesinSolution?

Itisfrequentlyusefultoknowtheaveragevolumeofsolutionoccupiedbyeachmolecule,ormoredirectly,theaveragedistanceseparatingmoleculesinsolution.Thisisasimplecalculationbasedonlyonthemolarconcentration.

Ina1-Msolution,thereare6 × 1023molecules/l,=0.6molecules/nm3,orinverting,thevolumepermoleculeisV = 1.66nm3/moleculeat1M.ForaconcentrationC,thevolumepermoleculeisV = 1.66/C.

Wewilltakethecuberootofthevolumepermoleculeasanindicationoftheaverageseparation.

ProteinM(kDa)

5

10

20

50

100

200

500

Rmin(nm)

1.1

1.42

1.78

2.4

3.05

3.84

5.21

$$d = V^{{1 mathord{left/ {vphantom {1 3}} 
ight. kern-
ulldelimiterspace} 3}} = {1.18} mathord{left/ {vphantom {{1.18} C}} 
ight. kern-
ulldelimiterspace} C^{{1 mathord{left/ {vphantom {1 3}} 
ight. kern-
ulldelimiterspace} 3}} ,$$
(3.1)
whereCisinmolaranddisinnanometer.Table2givessometypicalvalues.
Table2Distancebetweenmoleculesasfunctionofconcentration

Twointerestingexamplesarehemoglobinandfibrinogen.Hemoglobinis330mg/mlinerythrocytes,makingitsconcentration0.005M.Theaverageseparationofmolecules(centertocenter)is6.9nm.Thediameterofasinglehemoglobinmoleculeisabout5nm.Thesemoleculesareveryconcentrated,nearthehighestphysiologicalconcentrationofanyprotein(thecrystallinsinlenscellscanbeat>50%proteinbyweight).

Fibrinogenisalargerod-shapedmoleculethatformsafibrinbloodclotwhenactivated.Itcirculatesinplasmaataconcentrationofaround2.5g/l,about9μM.Thefibrinogenmoleculesarethereforeabout60nmapart,comparabletothe46-nmlengthoftherod-shapedmolecule.


TheSedimentationCoefficientandFrictionalRatio.IstheProteinGlobularorElongated?

Biochemistshavelongattemptedtodeducetheshapeofaproteinmoleculefromhydrodynamicparameters.Therearetwomajorhydrodynamicmethodsthatareusedtostudyproteinmolecules—sedimentationanddiffusion(orgelfiltration,whichistheequivalentofmeasuringthediffusioncoefficient).

Thesedimentationcoefficient,S,canbedeterminedinananalyticalultracentrifuge.Thiswasastandardpartofthecharacterizationofproteinsinthe1940sand1950s,andvaluesofS20,w(sedimentationcoefficientstandardizedto20°Cinwater)arecollectedinreferencessuchastheChemicalRubberCo.(CRC)HandbookofBiochemistry(3).Today,Sismorefrequentlydeterminedbyzonesedimentationinasucroseorglycerolgradient,bycomparisontostandardproteinsofknownS.Fivetotwentypercentsucrosegradientshavebeenmostfrequentlyused,butweprefer15–40%glycerolgradientsin0.2Mammoniumbicarbonate,becausethisisthebufferusedforrotaryshadowingEM(Section6).Theproteinofinterestissedimentedinonebucketoftheswingingbucketrotor,andproteinstandardsofknownS(Table5)aresedimentedinaseparate(orsometimesthesame)gradient.Followingsedimentation,thegradientiselutedintofractionsandeachfractionisanalyzedbysodiumdodecylsulfatepolyacrylamidegelelectrophoresis(SDS-PAGE)tolocatethestandardsandthetestprotein.Figure1showsanexampledeterminingthesedimentationcoefficientofthestructuralmaintenanceofchromosome(SMC)proteinfromBacillussubtilis.
MediaObjects/12575_2009_9008_Fig1_HTML.gif
Fig.1GlycerolgradientsedimentationanalysisofSMCproteinfromB.subtilis(BsSMC;upperpanel)andsedimentationstandardscatalaseandbovineserumalbumin(lowerpanel).A200-μlsamplewaslayeredona5.0-mlgradientof15–40%glycerolin0.2MammoniumbicarbonateandcentrifugedinaBeckmanSW55.1swingingbucketrotor,16h,38,000rpm,20°C.Twelvefractionsof400μleachwerecollectedfromaholeinthebottomofthetubeandeachfractionwasrunonSDS-PAGE.LaneSMshowsthestartingmaterial,andfraction1isthebottomofthegradient.Thebottompanelshowsthatthe11.3-Scatalaseelutedpreciselyinfraction4,whilethe4.6-SBSAelutedmostlyinfraction8,withsomeinfraction9.WeestimatedtheBSAtobecenteredonfraction8.2.Experimentswithadditionalstandardproteinshavedemonstratedthatthe15–40%glycerolgradientsarelinearovertherange3–20S,soalinearinterpolationisusedtodetermineSoftheunknownprotein.BsSMCisinfractions7and8,estimatedmorepreciselyatfraction7.3.Extrapolatingfromthestandards,wedetermineasedimentationcoefficientof6.0SforBsSMC.Otherexperimentsgaveanaveragevalueof6.3SforBsSMC(19).

Thesedimentationcoefficientofaproteinisameasureofhowfastitmovesthroughthegradient.Increasingthemassoftheproteinwillincreaseitssedimentation,whileincreasingitssizeorasymmetrywilldecreaseitssedimentation.TherelationshipofStosizeandshapeoftheproteinisgivenbytheSvedbergformula:

Concentration

1M

1mM

1μM

1nM

Distancebetweenmolecules(nm)

1.18

11.8

118

1,180

$$S = {M{left( {1 - v_{2} 
ho } 
ight)}} mathord{left/ {vphantom {{M{left( {1 - v_{2} 
ho } 
ight)}} {N_{{	ext{o}}} f}}} 
ight. kern-
ulldelimiterspace} {N_{{	ext{o}}} f} = {M{left( {1 - v_{2} 
ho } 
ight)}} mathord{left/ {vphantom {{M{left( {1 - v_{2} 
ho } 
ight)}} {,{left( {N_{{	ext{o}}} 6pi eta R_{{	ext{s}}} } 
ight)}}}} 
ight. kern-
ulldelimiterspace} {,{left( {N_{{	ext{o}}} 6pi eta R_{{	ext{s}}} } 
ight)}}.$$
(4.1)

MisthemassoftheproteinmoleculeinDalton;NoisAvogadro’snumber,6.023 × 1023;v2isthepartialspecificvolumeoftheprotein;typicalvalueis0.73cm3/g;ρisthedensityofsolvent(1.0g/cm3forH2O);ηistheviscosityofthesolvent(0.01g/cm−sforH2O).

Acriticalfactorintheequationisthefrictionalcoefficient,f(dimensionsgrampersecond)whichdependsonboththesizeandshapeoftheprotein.Foragivenmassofprotein(orgivenvolume),fwillincreaseastheproteinbecomeselongatedorasymmetrical(fcanbereplacedbyanequivalentexpressioncontainingRs,theStokesradius,tobediscussedlater).Shasthedimensionsoftime(seconds).Fortypicalproteinmolecules,Sisintherangeof2–20 × 10−13s,andthevalue10−13sisdesignatedaSvedbergunit,S.Thus,typicalproteinshavesedimentationcoefficientsof2–20S.

Fromtheabovedefinitionofparameters,itisclearthatSdependsonthesolventandtemperature.Inclassicalstudies,thesolvent-dependentfactorswereeliminatedandthesedimentationcoefficientwasextrapolatedtothevalueitwouldhaveat20°Cinwater(forwhichρandηaregivenabove).ThisisreferredtoasS20,w.Inthepresenttreatment,wewillbereferringmostlytostandardproteinsthathavealreadybeencharacterized,orunknownonesthatwillbereferencedtotheseingradientsedimentation,soouruseofSwillalwaysmeanS20,w.

Ausefulconceptistheminimumvalueoff,whichwouldobtainifthegivenmassofproteinwerepackedintoasmoothunhydratedsphere.AswehavediscussedinSection1,theradiusofthisspherewillbeRmin = 0.066M1/3(Eq.2.2).Inabout1850,G.G.Stokescalculatedtheoreticallythefrictionalcoefficientofasmoothsphere(notethattheequationissimilartothatfortheStokesradius,tobediscussedlater,buttheparametersherearedifferent):
$$f_{{min }} = 6pi eta R_{{min }} .$$
(4.2)

Wehavenowdesignatedfminastheminimalfrictionalcoefficientforaproteinofagivenmass,whichwouldobtainiftheproteinwereasmoothsphereofradiusRmin.

Theactualfofaproteinwillalwaysbelargerthanfminbecauseoftwothings.First,theshapeoftheproteinnormallydeviatesfromspherical,tobeellipsoidalorelongated;closelyrelatedtothisisthefactthatthesurfaceoftheproteinisnotsmoothbutratherroughonthescaleofthewatermoleculesitistravelingthrough.Second,allproteinsaresurroundedbyashellofboundwater,one–twomoleculesthick,whichispartiallyimmobilizedorfrozenbycontactwiththeprotein.Thiswaterofhydrationincreasestheeffectivesizeoftheproteinandthusincreasesf.

ThePerrinEquationDoesNotWorkforProteins

Ifonecoulddeterminetheamountofwaterofhydrationandfactorthisout,therewouldbehopethattheremainingexcessoffoverfmincouldbeinterpretedintermsofshape.Algorithmshavebeendevisedforestimatingtheamountofboundwaterfromtheaminoacidsequence,butthesegenerallydonotdistinguishbetweenburiedresidues,whichhavenoboundwaterandsurfaceresidueswhichbindwater.Someattemptshavebeenmadetobasetheestimateofboundwaterbasedonpolarresidues,whicharemostlyexposedonthesurface.A0.3-gH2O/gproteinisatypicalestimate,butinfact,thiskindofguessisalmostuselessforanalyzingf.

Intheolderdays,whentherewassomeconfidenceintheseestimatesofboundwater,physicalchemistscalculatedavaluecalledfo,whichwasthefrictionalcoefficientforaspherethatwouldcontainthegivenprotein,butenlargedbytheestimatedshellofwater(otherauthorsusefotodesignatewhatwetermfmin(3,4);werecommendusingfmintoavoidambiguity).Themeasuredfforproteinswasalmostalwayslargerthanfo,suggestingthattheproteinwasasymmetricalorelongated.Averypopularanalysiswastomodeltheproteinasanellipsoidofrevolutionandcalculatetheaxialratiofromf/fo,usinganequationfirstdevelopedbyPerrin.Thisapproachisdetailedinmostclassicaltextsofphysicalbiochemistry.Infact,thePerrinanalysisalwaysoverestimatestheasymmetryoftheproteins,typicallybyafactoroftwotofive.Itshouldnotbeusedforproteins.

Theproblemisillustratedbyanearlycollaborativestudyofphosphofructokinase,inwhichthelaboratoryofJamesLeedidhydrodynamicsandourlaboratorydidEM(5).WefoundbyEMthatthetetramericparticleswereapproximatelycylinders,9nmindiameterand14nmlong.Theshapewasthereforelikearugbyball,withanaxialratioof1.5foraprolateellipsoidofrevolution.TheLeegroupmeasuredthemolecularweightandsedimentationcoefficient,determinedfandestimatedwaterofhydrationandfo.TheythenusedthePerrinequationtocalculatetheaxialratio.Theratiowasfive,whichwouldsuggestthattheproteinhadtheshapeofahotdog.TheEMstructure(whichwaslaterconfirmedbyX-raycrystallography)showsthatthePerrinequationoverestimatedtheaxialratiobyafactorof3.

Telleretal.(6)summarizedthesituation:“Frequentlytheaxialratiosresultingfromsuchtreatmentareabsurdinlightofthepresentknowledgeofproteinstructure.”TheyexplainedthatthemajorproblemwiththePerrinequationisthatittreatstheproteinasasmoothellipsoid,wheninfactthesurfaceoftheproteinisquiterough.Telleretal.wentontoshowhowthefrictionalcoefficientcanactuallybederivedfromtheknownatomicstructureoftheprotein,bymodelingthesurfaceoftheproteinasashellofsmallbeadsofradius1.4Å.Theshellcoatedthesurfaceoftheprotein,modelingitsrugosity,andincreasingthesizeoftheproteinbytheequivalentofasinglelayerofboundwater.ThisanalysishasbeenextendedbyGarciaDeLaTorreandcolleagues(7).

InterpretingShapefromf/fmin = Smax/S

IfthePerrinequationisuseless,istheresomeotherwaythatshapecanbeinterpretedfromf?Theanswerisyes,atasemiquantitativelevel.Wehavediscoveredsimpleguidelineswheretheratiof/fmincanprovideagoodindicationofwhetheraproteinisglobular,somewhatelongated,orveryelongated.

Insteadofproceedingwiththeclassicalratiof/fmin,wherefisinnonintuitiveunits,wewillreformulatetheanalysisdirectlyintermsofthesedimentationcoefficient,whichistheparameteractuallymeasured.WewilldefineavalueSmaxasthemaximumpossIBLesedimentationcoefficient,correspondingtofmin.SmaxistheSvaluethatwouldbeobtainediftheproteinwereasmoothspherewithnoboundwater.Thesetworatiosareequal:f/fmin = Smax/S.CombiningEqs.2.2,4.1,and4.2,wehave
$$S_{{max }} = 10^{{13}} M{left( {1 - v_{2} 
ho } 
ight)}/N_{{	ext{o}}} {left( {6pi eta R_{{min }} } 
ight)} = M{left[ {2.378; 	imes ;10^{{ - 4}} } 
ight]}/R_{{min }} $$
(4.3a)
$$S_{{max }} = 0.00361M^{{2/3}} .$$
(4.3b)
Theleadingfactorof1013inEq.4.3aconvertsSmaxtoSvedbergunits.ThenumbersinbracketsinEq.4.3aarecalculatedusingv2 = 0.73cm3/g,ρ = 1.0g/cm3,η = 0.01gcm−1s−1 = 10−9gnm−1s−1.Thefinalexpression,Eq.4.3bexpressesSmaxinSvedbergsforaproteinofmassMinDaltons.SometypicalnumericalvaluesofSmaxforproteinsfrom10,000to1,000,000DaaregiveninTable3.
Table3Smaxcalculatedforproteinsofdifferentmass
WehavesurveyedvaluesofSmax/Sforavarietyofproteinsofknownstructure.Table4presentsSmax/Sforanumberofapproximatelyglobularproteinsandforarangeofelongatedproteins,allofknowndimensions.ItturnsoutthatSmax/Sisanexcellentpredictorofthedegreeofasymmetryofaprotein.Fromthissurveyofknownproteins,wecanproposethefollowinggeneralprincipals.

ProteinMr(kDa)

10

25

50

100

200

500

1,000

SmaxSvedbergs

1.68

3.1

4.9

7.8

12.3

22.7

36.1

NoproteinhasSmax/S = f/fminsmallerthan∼1.2.
Forapproximatelyglobularproteins:
Smax/Sistypicallybetween1.2and1.3.
Formoderatelyelongatedproteins:
Smax/Sisintherangeof1.5to1.9.
Forhighlyelongatedproteins(tropomyosin,fibrinogen,extendedfibronectin):
Smax/Sisintherangeof2.0to3.0.
Forverylongthread-likemoleculeslikecollagen,orhugeextendedmoleculeslikethetenascinhexabrachion(notshown):
Smax/Scanrangefrom3–4ormore.
Table4Smax/Svaluesforrepresentativeglobularandelongatedproteins

Apartfromindicatingtheshapeofaprotein,Smax/Scanoftengivevaluableinformationabouttheoligomericstate,ifonehassomeideaoftheshape.Forexample,ifoneknowsthattheproteinsubunitisapproximatelyglobular(fromEMforexample),butfindsSmax/S = 2.1,thiswouldsuggestthattheproteininsolutionisactuallyadimer.Ontheotherhand,ifonethinksaproteinisadimer,butfindsSmax/S < 1.0forthedimermass,theproteinisapparentlysedimentingasamonomer.

TheuseofSmax/Stoestimateproteinshapehasbeendescribedbrieflyin(8).


TheKirkwood/BloomfieldCalculation

TheunderstandingofhowproteinshapeaffectshydrodynamicsiselegantlyextendedbyananalysisoriginallydevelopedbyKirkwood(9)andlaterextendedbyBloomfieldandGarciaDeLaTorres(1012).Initssimplestapplication,itcalculatesthesedimentationcoefficientofarigidoligomericproteincomposedofsubunitsofknownSandknownspacingrelativetoeachother.Inmorecomplexapplications,aproteinofanycomplexshapecanbemodeledasasetofnonoverlappingspheresorbeads.SeeByron(13)foracomprehensivereviewoftheprincipalsandapplicationsofhydrodynamicbeadmodelingofbiologicalmacromolecules.

ThebasisoftheKirkwood/Bloomfieldanalysisistoaccountforhoweachbeadshieldstheothersfromtheeffectofsolventflowandtherebydeterminethehydrodynamicsoftheensemblefromitscomponentbeads.Figure2showsasimpleexampleofthebeadmodelingapproachandprovidesaninstructivelookathowsizeandshapeaffectsedimentation.Thereareseveralimportantconclusions.

Protein

Dimensions(nm)

Mass

Smax

S

Smax/S

Globularproteinstandardsdimensionsarefrompdbfiles

Phosphofructokinase

14 × 9 × 9

345,400

17.77

12.2

1.46

Catalase

9.7 × 9.2 × 6.7

230,000

13.6

11.3

1.20

Serumalbumin

7.5 × 6.5 × 4.0

66,400

5.9

4.6

1.29

Hemoglobin

6 × 5 × 5

64,000

5.78

4.4

1.32

Ovalbumin

7.0 × 3.6 × 3.0

43,000

4.43

3.5

1.27

FtsZ

4.8 × 4 × 3

40,300

4.26

3.4

1.25

Elongatedproteinstandards—tenascinfragments(27,28);heatrepeat(29,30)

TNfn1–5

14.7 × 1.7 × 2.8

50,400

4.94

3.0

1.65

TNfn1–8

24.6 × 1.7 × 2.8

78,900

6.64

3.6

1.85

TNfnALL

47.9 × 1.7 × 2.8

148,000

10.1

4.3

2.36

PR65/AHEATrepeat

17.2 × 3.5 × 2.0

60,000

5.53

3.6

1.54

Fibrinogen

46 × 3 × 6

390,000

19.3

7.9

2.44

ArodofthreebeadshasaboutatwofoldhigherSthanasinglebead.
Smax/Sis1.18forthesinglebead(theeffectoftheassumedshellofwater),1.34forthethree-beadrod,and1.93forthestraight11-beadrod.ThisisconsistentwiththeprincipalsgiveninSection4forglobular,somewhatelongated,andveryelongatedparticles.
Bendingtherodat90°inthemiddlecausesonlyasmallincreaseinS.BendingitintoaU-shapewiththearmsaboutonebeaddiameterapartincreasesSabitmore.Bendingthissame11-beadstructuremoresharply,sothetwoarmsareincontact,causesasubstantialincreaseinS,from5.05to5.58.TheguidingprincipleisthatfoldingaffectsSwhenonepartofthemoleculeisbroughtcloseenoughtoanothertoshielditfromwaterflow.
MediaObjects/12575_2009_9008_Fig2_HTML.gif
Fig.2Eachbeadmodelsa10-kDadomain,withanassumedsedimentationcoefficientof1.42S.Theradiusofthebeadis1.67nm,usingRmin = 1.42nm,andadding0.25nmforashellofwater.ThebeadsareanapproximationtoFN-IIIorIgdomains,whichare∼1.7 × 2.8 × 3.5nm.ThesedimentationcoefficientsofmultibeadstructureswerecalculatedbytheformulaofKirkwood/Bloomfield.


GelFiltrationChromatographyandtheStokesRadius

“Gelfiltrationchromatographyiswidelyusedfordeterminingproteinmolecularweight.”ThisquotefromSigma-Aldrichbulletin891Aisawidelyheldmisconception.Thefallacyisobscurelycorrectedbyalaternoteinthebulletinthat“Onceacalibrationcurveisprepared,theelutionvolumeforaproteinofsimilarshape,butunknownweight,canbeusedtodeterminetheMW.”Thekeyissueis“ofsimilarshape”.Generally,thecalibrationproteinsareallglobular,andiftheunknownproteinisalsoglobular,thecalibratedgelfiltrationcolumndoesgiveagoodapproximationofitsmolecularweight.Theproblemisthattheshapeofanunknownproteinisgenerallyunknown.Iftheunknownproteiniselongated,itcaneasilyeluteatapositiontwicethemolecularweightofaglobularprotein.

Thegelfiltrationcolumnactuallyseparatesproteinsnotontheirmolecularweightbutontheirfrictionalcoefficient.Sincethefrictionalcoefficient,f,isnotanintuitiveparameter,itisusuallyreplacedbytheStokesradiusRs.Rsisdefinedastheradiusofasmoothspherethatwouldhavetheactualfoftheprotein.Thisismuchmoreintuitivesinceitallowsonetoimaginearealsphereapproximatelythesizeoftheprotein,orsomewhatlargeriftheproteiniselongatedandhasboundwater.

AsmentionedaboveforEq.4.2,Stokescalculatedtheoreticallythefrictionalcoefficientofasmoothspheretobe:
$$f = 6pi eta R_{{	ext{s}}} .$$
(6.1)

TheStokesradiusRsislargerthanRminbecauseitistheradiusofasmoothspherewhosefwouldmatchtheactualfoftheprotein.Itaccountsforboththeasymmetryoftheproteinandtheshellofboundwater.Morequantitatively,f/fmin = Smax/S=Rs/Rmin.

SiegelandMonte(4)arguedconvincinglythattheelutionofproteinsfromagelfiltrationcolumncorrelatescloselywiththeStokesradius,Rs,presentingexperimentaldatafromawiderangeofglobularandelongatedproteins.TheStokesradiusisknownforlargenumberofproteins,includingonesconvenientforcalibratinggelfiltrationcolumns(Table5).Figure3showsanexamplewheretheRsoftheunknownproteinSMCproteinfromB.subtiliswasdeterminedbygelfiltration.
MediaObjects/12575_2009_9008_Fig3_HTML.gif
Fig.3DeterminationofRsofBsSMCbygelfiltration.ThecolumnwascalibratedbyrunningstandardproteinsBSA,catalase,andthyroglobulinoverthecolumn,thenBsSMC.BsSMCelutedinfraction14.2,whichcorrespondstoanRsof10nmontheextrapolatedcurve.Inrepeatedexperiments,theaverageRswas10.3nm(19).

Table5Standardsforhydrodynamicanalysis
Gelfiltrationcalibrationkits,containingglobularproteinsofknownmolecularweightandRs,arecommerciallyavailable(GEHealthcare,Sigma-Aldrich).Thesesameproteinscanbeusedforsedimentationstandards.Theproteinsinthesekitsareincludedinthetablealongwithsomeothersthatwehavefounduseful.ThevaluesforMrgiveninthefirstcolumnarefromaminoacidsequencedata.ValuesforS20,wandRsarefromtheSiegel–Montepaper(indicatedS-Mundersource),ortheCRCHandbookofBiochemistry(3)(indicatedHBC).TheyagreewiththevalueslistedforRsintheGEHealthcaregelfiltrationcalibrationkit,withtheexceptionofferritin.The“Mrcalc”inthelastcolumnwasobtainedbyoursimplificationoftheSiegel–Montecalculation(M = 4,205SRs).Notethattheworstdisagreementwith“Mraaseq”isabout10%
aSforribonucleaseAisquestionablebecauseofthelowSmax/S(1.05).Svaluesforbovineserumalbuminvaryintheliteraturefrom4.3to4.9.Manysourcesuse4.3,butwefindthat4.6givesabetterfitwithotherstandards(notethatthestandardcurveinFig.5used4.3,but4.6wouldhaveplaceditclosertotheline)

ThestandardproteinsshouldspanRsvaluesaboveandbelowthatoftheproteinofinterest(butinthecaseofSMCproteinfromB.subtilis,ashortextrapolationtoalargervaluewasused).TheliteraturegenerallyrecommendsdeterminingthevoidandincludedvolumesofthecolumnandplottingapartitioncoefficientKAV(4).However,wehavefounditgenerallysatisfactorytosimplyplotelutionpositionvsRsforthestandardproteins.Thisgenerallygivesanapproximatelylinearplot,butotherwise,itissatisfactorytodrawlinesbetweenthepointsandreadtheRsoftheproteinofinterestfromitselutionpositiononthisstandardcurve.

AgelfiltrationcolumncandetermineRsrelativetotheRsofthestandardcalibrationproteins.TheRsofthesestandardswasgenerallydeterminedfromexperimentallymeasureddiffusioncoefficients.Sometabulationsofhydrodynamicdatalistthediffusioncoefficient,D,ratherthanRs,soitisworthknowingtherelationship:

Protein

Mraaseq

S20,w

Smax/S

Rs(nm)

Source

MrS-M

RibonucleaseAbeefpancreas

14,044

2.0a

1.05a

1.64

HBC

13,791

ChymotrypsinogenAbeefpancreas

25,665

2.6

1.21

2.09

HBC

22,849

Ovalbuminhenegg

42,910s

3.5

1.27

3.05

HBC

44,888

Albuminbeefserum

69,322

4.6a

1.33

3.55

S-M,HBC

68,667

Aldolaserabbitmuscle

157,368

7.3

1.45

4.81

HBC

147,650

Catalasebeefliver

239,656

11.3

1.21

5.2

S-M

247,085

Apo-ferritinhorsespleen

489,324

17.6

1.28

6.1

HBC

451,449

Thyroglobulinbovine

606,444

19

1.37

8.5

HBC

679,107

Fibrinogen,human

387,344

7.9

2.44

10.7

S-M

355,449

$$D = {kT} mathord{left/ {vphantom {{kT} f}} 
ight. kern-
ulldelimiterspace} f = {kT} mathord{left/ {vphantom {{kT} {{left( {6pi eta R_{{	ext{s}}} } 
ight)}}}} 
ight. kern-
ulldelimiterspace} {{left( {6pi eta R_{{	ext{s}}} } 
ight)}}.$$
(6.2)
wherek = 1.38 × 10−16gcm2s−2K−1isBoltzman’sconstantandTistheabsolutetemperature.kisgivenhereincentimeter–gram–secondunitsbecauseDistypicallyexpressedincentimeter–gram–second;Rswillbeexpressedincentimeterinthisequation.TypicalproteinshaveDintherangeof10−6to10−7cm2s−1.ConvertingtonanometerandforT = 300Kandη = 0.01:
$$R_{{	ext{s}}} = {left( {1 mathord{left/ {vphantom {1 D}} 
ight. kern-
ulldelimiterspace} D} 
ight)},2.2; 	imes ;10^{{ - 6}} ,$$
(6.3)
whereRsisinnanometerandDisincentimetersquaredpersecond.

Simplyknowing,Rsisnotveryvaluableinitself,exceptforestimatingthedegreeofasymmetry,butthiswouldbethesameanalysisdevelopedaboveforSmax/S.However,ifonedeterminesbothRsandS,thispermitsadirectdeterminationofmolecularweight,whichcannotbededucedfromeitheronealone.Thisisdescribedinthenextsection.


DeterminingtheMolecularWeightofaProteinMolecule—CombiningSandRsàlaSiegelandMonte

Withthecompletionofmultiplegenomesandincreasinglygoodannotation,theprimarysequenceofalmostanyproteincanbefoundinthedatabases.Themolecularweightofeveryproteinsubunitisthereforeknownfromitssequence.Butanexperimentalmeasureisstillneededtodetermineifthenativeproteininsolutionisamonomer,dimer,oroligomer,orifitformsacomplexwithotherproteins.Ifonehasapurifiedprotein,themolecularweightcanbedeterminedquiteaccuratelybysedimentationequilibriumintheanalyticalultracentrifuge.ThistechniquehasmadeastrongcomebackwiththeintroductionoftheBeckmanXL-Aanalyticalultracentrifuge.Thereareanumberofgoodreviews(14,15),andthedocumentationandprogramsthatcomewiththecentrifugeareveryinstructive.

WhatifonedoesnothaveanXL-Acentrifugeortheproteinofinterestisnotpurified?In1966,SiegelandMonte(4)proposedamethodthatachievestheresultsofsedimentationequilibrium,withtwoenormousadvantages.First,itrequiresonlyapreparativeultracentrifugeforsucroseorglycerolgradientsedimentationandagelfiltrationcolumn.Thisequipmentisavailableinmostbiochemistrylaboratories.Second,theproteinofinterestneednotbepurified;oneneedsonlyanactivityoranantibodytolocateitinthefractions.Thisisaverypowerfultechniqueandshouldbeintherepertoireofeveryproteinbiochemist.

Themethodologyisverysimple.TheproteinisrunoveracalibratedgelfiltrationcolumntodetermineRsandhencef.Separately,theproteiniscentrifugedthroughaglycerolorsucrosegradienttodetermineS.OnethenusestheSvedbergequation(Eq.4.1)toobtainMasafunctionofRsandS.
$$M = SN_{{	ext{o}}} {{left( {6pi eta R_{{	ext{s}}} } 
ight)}} mathord{left/ {vphantom {{{left( {6pi eta R_{{	ext{s}}} } 
ight)}} {{left( {1 - v_{2} 
ho } 
ight)}}}} 
ight. kern-
ulldelimiterspace} {{left( {1 - v_{2} 
ho } 
ight)}}$$
(7.1a)
settingη = 0.01,v2ρ = 0.73,convertingStoSvedbergunitsandRstonanometer,wecansimplifyfurther:
$$M = 4,205,{left( {SR_{s} } 
ight)}$$
(7.1b)

whereSisinSvedbergunits,Rsisinnanometer,andMisinDaltons.

Thisisprettysimple!Importantly,intypicalapplications,thismethodgivestheproteinmasswithinabout±10%.Thisismorethanenoughprecisiontodistinguishbetweenmonomer,dimer,ortrimer.

ElectronMicroscopyofProteinMolecules

Sincetheearly1980s,electronmicroscopyhasbecomeapowerfultechniquefordeterminingthesizeandshapeofsingleproteinmolecules,especiallyoneslargerthan100kDa.TwotechniquesavailableinmostEMlaboratories,rotaryshadowingandnegativestain,canbeusedforimagingsinglemolecules.Cryo-EMisbecomingapowerfultoolforproteinstructuralanalysis,butitrequiresspecialequipmentandexpertise.Foralargenumberofapplications,rotaryshadowingandnegativestainprovidetheessentialstructuralinformation.

Forrotaryshadowing,adilutesolutionofproteinissprayedonmica,theliquidisevaporatedinahighvacuum,andplatinummetalisevaporatedontothemicaatashallowangle.Themicaisrotatedduringthisprocess,sotheplatinumbuildsuponallsidesoftheproteinmolecules.ThefirstEMimagesofsingleproteinmoleculeswereobtainedbyHallandSlayterusingrotaryshadowing(16).Theirimagesoffibrinogenshowedadistinctivetrinodularrod.However,rotaryshadowingfellintodisfavorbecausetheimagesweredifficulttoreproduce.Proteintendedtoaggregateandcollectsalt,ratherthanspreadassinglemolecules.In1976,JamesPullman,agraduatestudentattheUniversityofChicago,thendevisedaprotocolwithonesimplebutcrucialmodification—headded30%glyceroltotheproteinsolution.Forreasonsthatarestillnotunderstood,theglycerolgreatlyhelpsthespreadingoftheproteinassinglemolecules.

Pullmanneverpublishedhisprotocol,buttwolabssawhismimeographednotesandtestedouttheeffectofglycerol,asapartoftheirownattemptstoimproverotaryshadowing(17,18).Theyobtainedreproducibleandcompellingimagesoffibrinogen(thefirstsincetheoriginalHallandSlayterstudyandconfirmingthetrinodularrodstructure)andspectrin(thefirsteverimagesofthislargeprotein).Thetechniquehassincebeenusedincharacterizinghundredsofproteinmolecules.

Figure4showsrotaryshadowedSMCproteinfromB.subtilis,fibrinogen,andhexabrachion(tenascin).SMCproteinfromB.subtilisishighlyelongated,consistentwithitshighSmax/Sdiscussedabove(19).Thefibrinogenmoleculesshowthetrinodularrod,buttheseimagesalsoresolvedasmallfourthnodulenexttothecentralnodule(20),notseeninearlierstudies.Thecentralnoduleisabout50kDa,andthesmallerfourthnoduleisabout20kDa.The“hexabrachion”tenascinmolecule(21)illustratesthepowerofrotaryshadowingattwoextremes.First,themoleculeishuge.Eachofitssixarmsismadeupof∼30repeatingsmalldomains,totaling∼200,000Da.Atthelargerscale,theEMshowsthateacharmisanextendedstructure,matchingthelengthexpectediftherepeatingdomainsareanextendedstringofbeads.Atthefinerscale,theEMcandistinguishthedifferentsizeddomains.Theinnersegmentofeacharmisastringof3.5-kDaepidermalgrowthfactordomains,seenhereasathinnersegment.Astringof10-kDaFN-IIIdomainsisclearlydistinguishedasathickeroutersegment.Theterminalknobisasingle22-kDafibrinogendomain.TheRminofthesedomainsare0.8,1.7,and2.8nm,andthesecanbedistinguishedbyrotaryshadowing.RotaryshadowingEMcanvisualizesingleglobulardomainsassmallas10kDa(3.5nmdiameter)andelongatedmoleculesasthinas1.5nm(collagen).
MediaObjects/12575_2009_9008_Fig4_HTML.gif
Fig.4RotaryshadowingEMofthreehighlyelongatedproteinmolecules:theSMCproteinfromB.subtilis(19),fibrinogen(20),andthehexabrachionprotein,tenascin(21).

NegativestainisanotherEMtechniquecapableofimagingsingleproteinmolecules.Itisespeciallyusefulforimaginglargermoleculeswithacomplexinternalstructure,whichappearonlyasalargeblobinrotaryshadowing.Importantly,noncovalentprotein–proteinbondsaresometimesdisruptedintherotaryshadowingtechnique(8),buturanylacetate,inadditiontoprovidinghighresolutioncontrast,fixesoligomericproteinstructuresinafewmilliseconds(22).Anexcellentreviewofmoderntechniquesofnegativestaining,withcomparisontocryo-EM,isgivenin(23).

ThesimplepictureofthemoleculeproducedbyEMisfrequentlythemoststraightforwardandsatisfyingstructuralanalysisatthe1–2-nmresolution.Whenthestructureisconfirmedbyhydrodynamicanalysis,theinterpretationisevenmorecompelling.


HydrodynamicAnalysisandEMAppliedtoLargeMultisubunitComplexes

ThetextboxaboveshowedtheapplicationoftheSiegel–MonteanalysistoSMCproteinfromB.subtilis,whichhadonlyonetypesubunitandwasfoundtobeadimer.Similarhydrodynamicanalysiscanbeusedtoanalyzemultisubunitproteincomplexes.Therearemanyexamplesintheliterature;IwillshowhereanelegantapplicationtoDASH/Dam1.

TheproteincomplexcalledDASHorDam1isinvolvedinattachingchromosomalkinetochorestomicrotubulesinyeast.DASH/Dam1isacomplexoftenproteinsthatassembleintoaparticlecontainingonecopyofeachsubunit.Thesecomplexesfurtherassembleintoringsthatcanformaslidingwasheronthemicrotubule(24,25).Thebasicten-subunitcomplexhasbeenpurifiedfromyeastandhasalsobeenexpressedinEscherichiacoliandpurified(thisrequiredtheheroiceffortofexpressingalltenproteinssimultaneously(24)).Figure5showsthehydrodynamiccharacterizationofthepurifiedproteincomplexandillustratesseveralimportantfeatures.

ApplicationtoSMCproteinfromB.subtilis.Inthesectionsabove,weshowedhowSoftheSMCproteinfromB.subtiliswasdeterminedtobe6.3Sfromglycerolgradientsedimentation,andRswas10.3nm,fromgelfiltration.PuttingthesevaluesinEq.7.1b,wefindthatthemolecularweightofSMCproteinfromB.subtilisis273,000Da.Fromtheaminoacidsequence,weknowthatthemolecularweightofoneSMCproteinfromB.subtilissubunitis135,000Da.TheSiegel–MonteanalysisfindsthattheSMCproteinfromB.subtilismoleculeisadimer.

KnowingthatSMCproteinfromB.subtilisisadimerwithmolecularweight270,000Da,wecannowdetermineitsSmax/S.Smaxis15.1(Eq.4.3b)soSmax/Sis2.4.TheSMCproteinfromB.subtilismoleculeisthusexpectedtobehighlyelongated.EM(seebelow)confirmedthisprediction.

Forboththegelfiltration(sizeexclusionchromatography,Fig.5a)andgradientsedimentation,Fig.5b,twocalibrationcurvesofknownproteinstandardsareshown,greenandblack.Theseareindependentcalibrationruns.Inthisstudy,thegelfiltrationcolumnwascalibratedintermsofthereciprocaldiffusioncoefficient,1/D,whichisproportionaltoRs(Eq.6.2).
ThefractionswereanalyzedbyWesternblotforthelocationoftwoproteinsofthecomplex,Spc34pandHsk3p.Methodsnotesthat1mlfractionsfromgelfiltrationwereprecipitatedwithperchloricacidandrinsedwithacetonepriortoSDS-PAGE,anessentialamplificationforthedilutesamplesofyeastcytoplasmicextract.Thesetwoproteinselutedtogetherinbothgelfiltrationandsedimentation,consistentwiththeirbeingpartofthesamecomplex.
TheprofilesofthetwoproteinswereidenticalwhenanalyzedintheirnativeforminyeastcytoplasmicextractandasthepurifiedcomplexexpressedinE.coli.Thisisstrongevidencethattheexpressionproteiniscorrectlyfoldedandassembled.
Thereisminimaltrailingofanysubunits.Thismeansthatthereisnosignificantdissociationduringthetensofminutesforthegelfiltration,orthe12-hcentrifugation.Thecomplexisheldtogetherbyveryhighaffinitybonds,makingitessentiallyirreversible.
CombiningtheRs = 7.6nm(from1/D = 0.35 × 10−7,andS = 7.4,Eq.7.1bgivesamassofM = 236kDa,closetothe204kDaobtainedfromaddingthemassofthetensubunits.Smaxis12.6givingSmax/S = 1.7,suggestingamoderatelyelongatedprotein.
MediaObjects/12575_2009_9008_Fig5_HTML.gif
Fig.5HydrodynamicanalysisoftheDASH/Dam1complex.Gelfiltrationisshowninaandsucrosegradientsedimentationinb.Independentcalibrationcurvesusingstandardproteinsareshowninblackandgreen.DarkandlightblueshowSpc34pinyeastcytoplasmicextractandinthepurifiedrecombinantprotein.RedandpurpleshowHsk3p.TheproteinswereidentifiedandquantitatedbyWesternblotofthefractions,showninc.Thefourproteinbandselutedtogetherat1/D = 0.35 × 107,correspondingtoRs = 7.6nm,andat7.4S.ReproducedfromMirandaetal.(24)withpermissionoftheauthors.

Figure6showsEMimagesofDASH/DAM1byrotaryshadowing(a)andnegativestain(b).Rotaryshadowingshowedirregularparticlesabout13nmindiameter(24).Theparticleshadvariableandfrequentlyelongatedshapes,butinternalstructurecouldnotberesolved.Alaterstudyusedstateoftheartnegativestainingandsophisticatedcomputerprogramstosortimagesintoclassesandaveragethem(26).Theseimagesresolvedacomplexinternalstructure.Thenegativestainshowedmostoftheparticles(80%)tobedimers,with15%monomersand5%trimers.ThiscontradictsthehydrodynamicanalysisofMirandaetal.(24)showingthattheparticlesweremonomers.Thereasonforthisdiscrepancyisnotknown.
MediaObjects/12575_2009_9008_Fig6_HTML.gif
Fig.6EMofDASH/Dam1.aRotaryshadowingshowsparticlesroughly13nminsize,withirregularshape.bState-of-the-artnegativestaincoupledwithsingleparticleaveragingshowsacomplexinternalstructureoftheelongatedparticles.Thescalebarindicates100nmfortheunprocessedimages.Theaveragedimagesontherightshowamonomer,dimer,andtrimer.Thesepanelsare14nmwide.Thedimerwasthepredominantspecies.Leftpanel(rotaryshadowing)reprintedwithpermissionofMirandaetal.(24).Rightpanels(negativestain)reprintedwithpermissionofWangetal.(26).

================  蚂蚁淘在线  ================

免责声明:本文仅代表作者个人观点,与本网无关。其创作性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不做任何保证或承诺,请读者仅作参考,并请自行核实相关内容

版权声明:未经蚂蚁淘在线授权不得转载、摘编或利用其他方式使用上述作品。已经经本网授权使用作品的,应该授权范围内使用,并注明“来源:蚂蚁淘在线”。违反上述声明者,本网将追究其相关法律责任。

  • 资质认证

    获得国家资质,权威认证!

  • 全国联保

    全国联保,官方无忧售后

  • 正规发票

    正规发票,放心购买

  • 签订合同

    签订合同,保障您的权益

/**/