Mostproteinsfoldintoglobulardomains.Proteinfoldingisdrivenlargelybythehydrophobiceffect,whichseekstominimizecontactofthepolypeptidewithsolvent.Mostproteinsfoldintoglobulardomains,whichhaveaminimalsurfacearea.Peptidesfrom10to30kDatypicallyfoldintoasingledomain.Peptideslargerthan50kDatypicallyformtwoormoredomainsthatareindependentlyfolded.However,someproteinsarehighlyelongated,eitherasastringofsmallglobulardomainsorstABIlizedbyspecializedstructuressuchascoiledcoilsorthecollagentriplehelix.Theultimatestructuralunderstandingofaproteincomesfromanatomic-levelstructureobtainedbyX-raycrystallographyornuclearmagneticresonance.However,structuralinformationatthenanometerlevelisfrequentlyinvaluable.Hydrodynamics,inparticularsedimentationandgelfiltration,canprovidethisstructuralinformation,anditbecomesevenmorepowerfulwhencombinedwithelectronmicroscopy(EM).
Oneguidingprincipleenormouslysimplifiestheanalysisofproteinstructure.Theinteriorofproteinsubunitsanddomainsconsistsofcloselypackedatoms(1).Therearenosubstantialholesandalmostnowatermoleculesintheproteininterior.Asaconsequenceofthis,proteinsarerigidstructures,withaYoung’smodulussimilartothatofPlexiglas(2).EngineerssometimescategorizeBIOLOGyasthescienceof“softwetmaterials”.Thisistrueofsomehydratedgels,butproteinsarebetterthoughtofasharddryplastic.Thisisobviouslyimportantforallofbiology,tohavearigidmaterialwithwhichtoconstructthemachineryoflife.Asecondconsequenceoftheclosepackedinteriorofproteinsisthatallproteinshaveapproximatelythesamedensity,about1.37g/cm3.Formostofthefollowing,wewillusethepartialspecificvolume,v2,whichisthereciprocalofthedensity.v2variesfrom0.70to0.76fordifferentproteins,andthereisaliteratureoncalculatingordeterminingthevalueexperimentally.Forthepresentdiscussion,wewillignorethesevariationsandassumetheaveragev2 = 0.73cm3/g.
(2.1) |
Theinverserelationshipisalsofrequentlyuseful:M(Da) = 825V(nm3).
(2.2) |
Itisimportanttoemphasizethatthisistheminimumradiusofasmoothspherethatcouldcontainthegivenmassofprotein.Sinceproteinshaveanirregularsurface,evenonesthatareapproximatelysphericalwillhaveanaverageradiuslargerthantheminimum.
Itisfrequentlyusefultoknowtheaveragevolumeofsolutionoccupiedbyeachmolecule,ormoredirectly,theaveragedistanceseparatingmoleculesinsolution.Thisisasimplecalculationbasedonlyonthemolarconcentration.
Ina1-Msolution,thereare6 × 1023molecules/l,=0.6molecules/nm3,orinverting,thevolumepermoleculeisV = 1.66nm3/moleculeat1M.ForaconcentrationC,thevolumepermoleculeisV = 1.66/C.
ProteinM(kDa) | 5 | 10 | 20 | 50 | 100 | 200 | 500 |
---|---|---|---|---|---|---|---|
Rmin(nm) | 1.1 | 1.42 | 1.78 | 2.4 | 3.05 | 3.84 | 5.21 |
(3.1) |
Twointerestingexamplesarehemoglobinandfibrinogen.Hemoglobinis330mg/mlinerythrocytes,makingitsconcentration0.005M.Theaverageseparationofmolecules(centertocenter)is6.9nm.Thediameterofasinglehemoglobinmoleculeisabout5nm.Thesemoleculesareveryconcentrated,nearthehighestphysiologicalconcentrationofanyprotein(thecrystallinsinlenscellscanbeat>50%proteinbyweight).
Fibrinogenisalargerod-shapedmoleculethatformsafibrinbloodclotwhenactivated.Itcirculatesinplasmaataconcentrationofaround2.5g/l,about9μM.Thefibrinogenmoleculesarethereforeabout60nmapart,comparabletothe46-nmlengthoftherod-shapedmolecule.
Biochemistshavelongattemptedtodeducetheshapeofaproteinmoleculefromhydrodynamicparameters.Therearetwomajorhydrodynamicmethodsthatareusedtostudyproteinmolecules—sedimentationanddiffusion(orgelfiltration,whichistheequivalentofmeasuringthediffusioncoefficient).
Concentration | 1M | 1mM | 1μM | 1nM |
---|---|---|---|---|
Distancebetweenmolecules(nm) | 1.18 | 11.8 | 118 | 1,180 |
(4.1) |
MisthemassoftheproteinmoleculeinDalton;NoisAvogadro’snumber,6.023 × 1023;v2isthepartialspecificvolumeoftheprotein;typicalvalueis0.73cm3/g;ρisthedensityofsolvent(1.0g/cm3forH2O);ηistheviscosityofthesolvent(0.01g/cm−sforH2O).
Acriticalfactorintheequationisthefrictionalcoefficient,f(dimensionsgrampersecond)whichdependsonboththesizeandshapeoftheprotein.Foragivenmassofprotein(orgivenvolume),fwillincreaseastheproteinbecomeselongatedorasymmetrical(fcanbereplacedbyanequivalentexpressioncontainingRs,theStokesradius,tobediscussedlater).Shasthedimensionsoftime(seconds).Fortypicalproteinmolecules,Sisintherangeof2–20 × 10−13s,andthevalue10−13sisdesignatedaSvedbergunit,S.Thus,typicalproteinshavesedimentationcoefficientsof2–20S.
Fromtheabovedefinitionofparameters,itisclearthatSdependsonthesolventandtemperature.Inclassicalstudies,thesolvent-dependentfactorswereeliminatedandthesedimentationcoefficientwasextrapolatedtothevalueitwouldhaveat20°Cinwater(forwhichρandηaregivenabove).ThisisreferredtoasS20,w.Inthepresenttreatment,wewillbereferringmostlytostandardproteinsthathavealreadybeencharacterized,orunknownonesthatwillbereferencedtotheseingradientsedimentation,soouruseofSwillalwaysmeanS20,w.
(4.2) |
Wehavenowdesignatedfminastheminimalfrictionalcoefficientforaproteinofagivenmass,whichwouldobtainiftheproteinwereasmoothsphereofradiusRmin.
Theactualfofaproteinwillalwaysbelargerthanfminbecauseoftwothings.First,theshapeoftheproteinnormallydeviatesfromspherical,tobeellipsoidalorelongated;closelyrelatedtothisisthefactthatthesurfaceoftheproteinisnotsmoothbutratherroughonthescaleofthewatermoleculesitistravelingthrough.Second,allproteinsaresurroundedbyashellofboundwater,one–twomoleculesthick,whichispartiallyimmobilizedorfrozenbycontactwiththeprotein.Thiswaterofhydrationincreasestheeffectivesizeoftheproteinandthusincreasesf.
Ifonecoulddeterminetheamountofwaterofhydrationandfactorthisout,therewouldbehopethattheremainingexcessoffoverfmincouldbeinterpretedintermsofshape.Algorithmshavebeendevisedforestimatingtheamountofboundwaterfromtheaminoacidsequence,butthesegenerallydonotdistinguishbetweenburiedresidues,whichhavenoboundwaterandsurfaceresidueswhichbindwater.Someattemptshavebeenmadetobasetheestimateofboundwaterbasedonpolarresidues,whicharemostlyexposedonthesurface.A0.3-gH2O/gproteinisatypicalestimate,butinfact,thiskindofguessisalmostuselessforanalyzingf.
Intheolderdays,whentherewassomeconfidenceintheseestimatesofboundwater,physicalchemistscalculatedavaluecalledfo,whichwasthefrictionalcoefficientforaspherethatwouldcontainthegivenprotein,butenlargedbytheestimatedshellofwater(otherauthorsusefotodesignatewhatwetermfmin(3,4);werecommendusingfmintoavoidambiguity).Themeasuredfforproteinswasalmostalwayslargerthanfo,suggestingthattheproteinwasasymmetricalorelongated.Averypopularanalysiswastomodeltheproteinasanellipsoidofrevolutionandcalculatetheaxialratiofromf/fo,usinganequationfirstdevelopedbyPerrin.Thisapproachisdetailedinmostclassicaltextsofphysicalbiochemistry.Infact,thePerrinanalysisalwaysoverestimatestheasymmetryoftheproteins,typicallybyafactoroftwotofive.Itshouldnotbeusedforproteins.
Theproblemisillustratedbyanearlycollaborativestudyofphosphofructokinase,inwhichthelaboratoryofJamesLeedidhydrodynamicsandourlaboratorydidEM(5).WefoundbyEMthatthetetramericparticleswereapproximatelycylinders,9nmindiameterand14nmlong.Theshapewasthereforelikearugbyball,withanaxialratioof1.5foraprolateellipsoidofrevolution.TheLeegroupmeasuredthemolecularweightandsedimentationcoefficient,determinedfandestimatedwaterofhydrationandfo.TheythenusedthePerrinequationtocalculatetheaxialratio.Theratiowasfive,whichwouldsuggestthattheproteinhadtheshapeofahotdog.TheEMstructure(whichwaslaterconfirmedbyX-raycrystallography)showsthatthePerrinequationoverestimatedtheaxialratiobyafactorof3.
Telleretal.(6)summarizedthesituation:“Frequentlytheaxialratiosresultingfromsuchtreatmentareabsurdinlightofthepresentknowledgeofproteinstructure.”TheyexplainedthatthemajorproblemwiththePerrinequationisthatittreatstheproteinasasmoothellipsoid,wheninfactthesurfaceoftheproteinisquiterough.Telleretal.wentontoshowhowthefrictionalcoefficientcanactuallybederivedfromtheknownatomicstructureoftheprotein,bymodelingthesurfaceoftheproteinasashellofsmallbeadsofradius1.4Å.Theshellcoatedthesurfaceoftheprotein,modelingitsrugosity,andincreasingthesizeoftheproteinbytheequivalentofasinglelayerofboundwater.ThisanalysishasbeenextendedbyGarciaDeLaTorreandcolleagues(7).
IfthePerrinequationisuseless,istheresomeotherwaythatshapecanbeinterpretedfromf?Theanswerisyes,atasemiquantitativelevel.Wehavediscoveredsimpleguidelineswheretheratiof/fmincanprovideagoodindicationofwhetheraproteinisglobular,somewhatelongated,orveryelongated.
(4.3a) |
(4.3b) |
ProteinMr(kDa) | 10 | 25 | 50 | 100 | 200 | 500 | 1,000 |
---|---|---|---|---|---|---|---|
SmaxSvedbergs | 1.68 | 3.1 | 4.9 | 7.8 | 12.3 | 22.7 | 36.1 |
• | NoproteinhasSmax/S = f/fminsmallerthan∼1.2. |
• | Forapproximatelyglobularproteins: Smax/Sistypicallybetween1.2and1.3. |
• | Formoderatelyelongatedproteins: Smax/Sisintherangeof1.5to1.9. |
• | Forhighlyelongatedproteins(tropomyosin,fibrinogen,extendedfibronectin): Smax/Sisintherangeof2.0to3.0. |
• | Forverylongthread-likemoleculeslikecollagen,orhugeextendedmoleculeslikethetenascinhexabrachion(notshown): Smax/Scanrangefrom3–4ormore. |
Apartfromindicatingtheshapeofaprotein,Smax/Scanoftengivevaluableinformationabouttheoligomericstate,ifonehassomeideaoftheshape.Forexample,ifoneknowsthattheproteinsubunitisapproximatelyglobular(fromEMforexample),butfindsSmax/S = 2.1,thiswouldsuggestthattheproteininsolutionisactuallyadimer.Ontheotherhand,ifonethinksaproteinisadimer,butfindsSmax/S < 1.0forthedimermass,theproteinisapparentlysedimentingasamonomer.
TheuseofSmax/Stoestimateproteinshapehasbeendescribedbrieflyin(8).
TheunderstandingofhowproteinshapeaffectshydrodynamicsiselegantlyextendedbyananalysisoriginallydevelopedbyKirkwood(9)andlaterextendedbyBloomfieldandGarciaDeLaTorres(10–12).Initssimplestapplication,itcalculatesthesedimentationcoefficientofarigidoligomericproteincomposedofsubunitsofknownSandknownspacingrelativetoeachother.Inmorecomplexapplications,aproteinofanycomplexshapecanbemodeledasasetofnonoverlappingspheresorbeads.SeeByron(13)foracomprehensivereviewoftheprincipalsandapplicationsofhydrodynamicbeadmodelingofbiologicalmacromolecules.
Protein | Dimensions(nm) | Mass | Smax | S | Smax/S |
---|---|---|---|---|---|
Globularproteinstandardsdimensionsarefrompdbfiles | |||||
Phosphofructokinase | 14 × 9 × 9 | 345,400 | 17.77 | 12.2 | 1.46 |
Catalase | 9.7 × 9.2 × 6.7 | 230,000 | 13.6 | 11.3 | 1.20 |
Serumalbumin | 7.5 × 6.5 × 4.0 | 66,400 | 5.9 | 4.6 | 1.29 |
Hemoglobin | 6 × 5 × 5 | 64,000 | 5.78 | 4.4 | 1.32 |
Ovalbumin | 7.0 × 3.6 × 3.0 | 43,000 | 4.43 | 3.5 | 1.27 |
FtsZ | 4.8 × 4 × 3 | 40,300 | 4.26 | 3.4 | 1.25 |
Elongatedproteinstandards—tenascinfragments(27,28);heatrepeat(29,30) | |||||
TNfn1–5 | 14.7 × 1.7 × 2.8 | 50,400 | 4.94 | 3.0 | 1.65 |
TNfn1–8 | 24.6 × 1.7 × 2.8 | 78,900 | 6.64 | 3.6 | 1.85 |
TNfnALL | 47.9 × 1.7 × 2.8 | 148,000 | 10.1 | 4.3 | 2.36 |
PR65/AHEATrepeat | 17.2 × 3.5 × 2.0 | 60,000 | 5.53 | 3.6 | 1.54 |
Fibrinogen | 46 × 3 × 6 | 390,000 | 19.3 | 7.9 | 2.44 |
• | ArodofthreebeadshasaboutatwofoldhigherSthanasinglebead. |
• | Smax/Sis1.18forthesinglebead(theeffectoftheassumedshellofwater),1.34forthethree-beadrod,and1.93forthestraight11-beadrod.ThisisconsistentwiththeprincipalsgiveninSection4forglobular,somewhatelongated,andveryelongatedparticles. |
• | Bendingtherodat90°inthemiddlecausesonlyasmallincreaseinS.BendingitintoaU-shapewiththearmsaboutonebeaddiameterapartincreasesSabitmore.Bendingthissame11-beadstructuremoresharply,sothetwoarmsareincontact,causesasubstantialincreaseinS,from5.05to5.58.TheguidingprincipleisthatfoldingaffectsSwhenonepartofthemoleculeisbroughtcloseenoughtoanothertoshielditfromwaterflow. |
“Gelfiltrationchromatographyiswidelyusedfordeterminingproteinmolecularweight.”ThisquotefromSigma-Aldrichbulletin891Aisawidelyheldmisconception.Thefallacyisobscurelycorrectedbyalaternoteinthebulletinthat“Onceacalibrationcurveisprepared,theelutionvolumeforaproteinofsimilarshape,butunknownweight,canbeusedtodeterminetheMW.”Thekeyissueis“ofsimilarshape”.Generally,thecalibrationproteinsareallglobular,andiftheunknownproteinisalsoglobular,thecalibratedgelfiltrationcolumndoesgiveagoodapproximationofitsmolecularweight.Theproblemisthattheshapeofanunknownproteinisgenerallyunknown.Iftheunknownproteiniselongated,itcaneasilyeluteatapositiontwicethemolecularweightofaglobularprotein.
Thegelfiltrationcolumnactuallyseparatesproteinsnotontheirmolecularweightbutontheirfrictionalcoefficient.Sincethefrictionalcoefficient,f,isnotanintuitiveparameter,itisusuallyreplacedbytheStokesradiusRs.Rsisdefinedastheradiusofasmoothspherethatwouldhavetheactualfoftheprotein.Thisismuchmoreintuitivesinceitallowsonetoimaginearealsphereapproximatelythesizeoftheprotein,orsomewhatlargeriftheproteiniselongatedandhasboundwater.
(6.1) |
TheStokesradiusRsislargerthanRminbecauseitistheradiusofasmoothspherewhosefwouldmatchtheactualfoftheprotein.Itaccountsforboththeasymmetryoftheproteinandtheshellofboundwater.Morequantitatively,f/fmin = Smax/S = Rs/Rmin.
ThestandardproteinsshouldspanRsvaluesaboveandbelowthatoftheproteinofinterest(butinthecaseofSMCproteinfromB.subtilis,ashortextrapolationtoalargervaluewasused).TheliteraturegenerallyrecommendsdeterminingthevoidandincludedvolumesofthecolumnandplottingapartitioncoefficientKAV(4).However,wehavefounditgenerallysatisfactorytosimplyplotelutionpositionvsRsforthestandardproteins.Thisgenerallygivesanapproximatelylinearplot,butotherwise,itissatisfactorytodrawlinesbetweenthepointsandreadtheRsoftheproteinofinterestfromitselutionpositiononthisstandardcurve.
Protein | Mraaseq | S20,w | Smax/S | Rs(nm) | Source | MrS-M |
---|---|---|---|---|---|---|
RibonucleaseAbeefpancreas | 14,044 | 2.0a | 1.05a | 1.64 | HBC | 13,791 |
ChymotrypsinogenAbeefpancreas | 25,665 | 2.6 | 1.21 | 2.09 | HBC | 22,849 |
Ovalbuminhenegg | 42,910s | 3.5 | 1.27 | 3.05 | HBC | 44,888 |
Albuminbeefserum | 69,322 | 4.6a | 1.33 | 3.55 | S-M,HBC | 68,667 |
Aldolaserabbitmuscle | 157,368 | 7.3 | 1.45 | 4.81 | HBC | 147,650 |
Catalasebeefliver | 239,656 | 11.3 | 1.21 | 5.2 | S-M | 247,085 |
Apo-ferritinhorsespleen | 489,324 | 17.6 | 1.28 | 6.1 | HBC | 451,449 |
Thyroglobulinbovine | 606,444 | 19 | 1.37 | 8.5 | HBC | 679,107 |
Fibrinogen,human | 387,344 | 7.9 | 2.44 | 10.7 | S-M | 355,449 |
(6.2) |
(6.3) |
Simplyknowing,Rsisnotveryvaluableinitself,exceptforestimatingthedegreeofasymmetry,butthiswouldbethesameanalysisdevelopedaboveforSmax/S.However,ifonedeterminesbothRsandS,thispermitsadirectdeterminationofmolecularweight,whichcannotbededucedfromeitheronealone.Thisisdescribedinthenextsection.
Withthecompletionofmultiplegenomesandincreasinglygoodannotation,theprimarysequenceofalmostanyproteincanbefoundinthedatabases.Themolecularweightofeveryproteinsubunitisthereforeknownfromitssequence.Butanexperimentalmeasureisstillneededtodetermineifthenativeproteininsolutionisamonomer,dimer,oroligomer,orifitformsacomplexwithotherproteins.Ifonehasapurifiedprotein,themolecularweightcanbedeterminedquiteaccuratelybysedimentationequilibriumintheanalyticalultracentrifuge.ThistechniquehasmadeastrongcomebackwiththeintroductionoftheBeckmanXL-Aanalyticalultracentrifuge.Thereareanumberofgoodreviews(14,15),andthedocumentationandprogramsthatcomewiththecentrifugeareveryinstructive.
WhatifonedoesnothaveanXL-Acentrifugeortheproteinofinterestisnotpurified?In1966,SiegelandMonte(4)proposedamethodthatachievestheresultsofsedimentationequilibrium,withtwoenormousadvantages.First,itrequiresonlyapreparativeultracentrifugeforsucroseorglycerolgradientsedimentationandagelfiltrationcolumn.Thisequipmentisavailableinmostbiochemistrylaboratories.Second,theproteinofinterestneednotbepurified;oneneedsonlyanactivityoranantibodytolocateitinthefractions.Thisisaverypowerfultechniqueandshouldbeintherepertoireofeveryproteinbiochemist.
(7.1a) |
(7.1b) |
whereSisinSvedbergunits,Rsisinnanometer,andMisinDaltons.
Sincetheearly1980s,electronmicroscopyhasbecomeapowerfultechniquefordeterminingthesizeandshapeofsingleproteinmolecules,especiallyoneslargerthan100kDa.TwotechniquesavailableinmostEMlaboratories,rotaryshadowingandnegativestain,canbeusedforimagingsinglemolecules.Cryo-EMisbecomingapowerfultoolforproteinstructuralanalysis,butitrequiresspecialequipmentandexpertise.Foralargenumberofapplications,rotaryshadowingandnegativestainprovidetheessentialstructuralinformation.
Forrotaryshadowing,adilutesolutionofproteinissprayedonmica,theliquidisevaporatedinahighvacuum,andplatinummetalisevaporatedontothemicaatashallowangle.Themicaisrotatedduringthisprocess,sotheplatinumbuildsuponallsidesoftheproteinmolecules.ThefirstEMimagesofsingleproteinmoleculeswereobtainedbyHallandSlayterusingrotaryshadowing(16).Theirimagesoffibrinogenshowedadistinctivetrinodularrod.However,rotaryshadowingfellintodisfavorbecausetheimagesweredifficulttoreproduce.Proteintendedtoaggregateandcollectsalt,ratherthanspreadassinglemolecules.In1976,JamesPullman,agraduatestudentattheUniversityofChicago,thendevisedaprotocolwithonesimplebutcrucialmodification—headded30%glyceroltotheproteinsolution.Forreasonsthatarestillnotunderstood,theglycerolgreatlyhelpsthespreadingoftheproteinassinglemolecules.
Pullmanneverpublishedhisprotocol,buttwolabssawhismimeographednotesandtestedouttheeffectofglycerol,asapartoftheirownattemptstoimproverotaryshadowing(17,18).Theyobtainedreproducibleandcompellingimagesoffibrinogen(thefirstsincetheoriginalHallandSlayterstudyandconfirmingthetrinodularrodstructure)andspectrin(thefirsteverimagesofthislargeprotein).Thetechniquehassincebeenusedincharacterizinghundredsofproteinmolecules.
NegativestainisanotherEMtechniquecapableofimagingsingleproteinmolecules.Itisespeciallyusefulforimaginglargermoleculeswithacomplexinternalstructure,whichappearonlyasalargeblobinrotaryshadowing.Importantly,noncovalentprotein–proteinbondsaresometimesdisruptedintherotaryshadowingtechnique(8),buturanylacetate,inadditiontoprovidinghighresolutioncontrast,fixesoligomericproteinstructuresinafewmilliseconds(22).Anexcellentreviewofmoderntechniquesofnegativestaining,withcomparisontocryo-EM,isgivenin(23).
ThesimplepictureofthemoleculeproducedbyEMisfrequentlythemoststraightforwardandsatisfyingstructuralanalysisatthe1–2-nmresolution.Whenthestructureisconfirmedbyhydrodynamicanalysis,theinterpretationisevenmorecompelling.
ThetextboxaboveshowedtheapplicationoftheSiegel–MonteanalysistoSMCproteinfromB.subtilis,whichhadonlyonetypesubunitandwasfoundtobeadimer.Similarhydrodynamicanalysiscanbeusedtoanalyzemultisubunitproteincomplexes.Therearemanyexamplesintheliterature;IwillshowhereanelegantapplicationtoDASH/Dam1.
ApplicationtoSMCproteinfromB.subtilis.Inthesectionsabove,weshowedhowSoftheSMCproteinfromB.subtiliswasdeterminedtobe6.3Sfromglycerolgradientsedimentation,andRswas10.3nm,fromgelfiltration.PuttingthesevaluesinEq.7.1b,wefindthatthemolecularweightofSMCproteinfromB.subtilisis273,000Da.Fromtheaminoacidsequence,weknowthatthemolecularweightofoneSMCproteinfromB.subtilissubunitis135,000Da.TheSiegel–MonteanalysisfindsthattheSMCproteinfromB.subtilismoleculeisadimer. |
KnowingthatSMCproteinfromB.subtilisisadimerwithmolecularweight270,000Da,wecannowdetermineitsSmax/S.Smaxis15.1(Eq.4.3b)soSmax/Sis2.4.TheSMCproteinfromB.subtilismoleculeisthusexpectedtobehighlyelongated.EM(seebelow)confirmedthisprediction. |
• | Forboththegelfiltration(sizeexclusionchromatography,Fig.5a)andgradientsedimentation,Fig.5b,twocalibrationcurvesofknownproteinstandardsareshown,greenandblack.Theseareindependentcalibrationruns.Inthisstudy,thegelfiltrationcolumnwascalibratedintermsofthereciprocaldiffusioncoefficient,1/D,whichisproportionaltoRs(Eq.6.2). |
• | ThefractionswereanalyzedbyWesternblotforthelocationoftwoproteinsofthecomplex,Spc34pandHsk3p.Methodsnotesthat1mlfractionsfromgelfiltrationwereprecipitatedwithperchloricacidandrinsedwithacetonepriortoSDS-PAGE,anessentialamplificationforthedilutesamplesofyeastcytoplasmicextract.Thesetwoproteinselutedtogetherinbothgelfiltrationandsedimentation,consistentwiththeirbeingpartofthesamecomplex. |
• | TheprofilesofthetwoproteinswereidenticalwhenanalyzedintheirnativeforminyeastcytoplasmicextractandasthepurifiedcomplexexpressedinE.coli.Thisisstrongevidencethattheexpressionproteiniscorrectlyfoldedandassembled. |
• | Thereisminimaltrailingofanysubunits.Thismeansthatthereisnosignificantdissociationduringthetensofminutesforthegelfiltration,orthe12-hcentrifugation.Thecomplexisheldtogetherbyveryhighaffinitybonds,makingitessentiallyirreversible. |
• | CombiningtheRs = 7.6nm(from1/D = 0.35 × 10−7,andS = 7.4,Eq.7.1bgivesamassofM = 236kDa,closetothe204kDaobtainedfromaddingthemassofthetensubunits.Smaxis12.6givingSmax/S = 1.7,suggestingamoderatelyelongatedprotein. |
================ 蚂蚁淘在线 ================
免责声明:本文仅代表作者个人观点,与本网无关。其创作性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不做任何保证或承诺,请读者仅作参考,并请自行核实相关内容
版权声明:未经蚂蚁淘在线授权不得转载、摘编或利用其他方式使用上述作品。已经经本网授权使用作品的,应该授权范围内使用,并注明“来源:蚂蚁淘在线”。违反上述声明者,本网将追究其相关法律责任。