- ZH2322经济型在线电导率仪/在线超纯水电阻率仪/在线电导...
- Antibodies for Mouse Platelet ...
- linux服务器上安装jdk的两种方法(yum+下载包)it...
- 实验九、桡足类形态观察及分类一
- Annexin VFITC/PI细胞凋亡检测试剂盒
- Regulation of BAD phosphorylat...
- Developmental and comparative ...
- 加拿大Polymer Source高分子聚合物 DEUTER...
- Címke: Ron Jonson Blikk ...
- Annexin VEGFP/PI细胞凋亡检测试剂盒_价格厂家...
- 脂质分别由哪几种元素组成化学元素
- “askinkai.diytrade.com”头条权重查询 ...
- [06-21]常用细胞凋亡检测方法 | 每日生物评论
- [10-02]细胞凋亡与程序性死亡有什么不同?_即问即答_家庭医生在线即问即答
- [10-02]...多.细胞凋亡的速率与它们的功能有什么关系?请结合这一实例说明...
- [06-05]【求助】流式细胞仪检测细胞凋亡结果分析 经验共享 分析测试...
- [07-25]TUNEL法检测细胞凋亡实验
- [10-02]细胞凋亡的生化特征主要有哪些_百度题库
- [10-02]细胞凋亡受外部环境影响吗?
- [07-23]流式细胞仪检测细胞凋亡
- [01-22]CCK8筛选出来的浓度为啥不用呢 细胞技术讨论版论坛
JC1分析线粒体膜电位的方法
AndreaCossarizzaandStefanoSalvioliDepartmentofBiomedicalSciencesUniversityofModenaSchoolofMedicineviaCampi287,41100Modena,Italyphone+3959428.613fax+3959428.623Email:cossariz@unimo.it
Introduction
- ThemitochondrialrespiratorychainproducesenergywhichisstoredasanelectRochemicalgrADIentwhichconsistsofatransmembraneelectricalpotential,negativeinsideofabout180-200mV,andaprotongradientofabout1unit;thisenergyisthenabletodrivethesynthesisofATP,acrucialmoleculeforaconsistentvarietyofintracellularprocesses.Severalmembranepermeablelipophiliccations,accumulatedbylivingcells,organellesandliposomesexhibitinganegativeinteriormembranepotential,havebeenusedtostudyDy.Suchprobesincludethosewhichexhibitopticalandfluorescenceactivityafteraccumulationintoenergizedsystems,suchas3,3"-diehexiloxadicarbocyanineiodide[DiOC6(3)],nonylacridineorange(NAO),safranineO,rhodamine-123(Rh123)etc.,radiolabelledprobes,(i.e.,[3H]methyltriphenyl-phosphonium,etc.)andunlabelledprobesusedwithspecificelectrodes[i.e.,tetraphenyl-phosphoniumion(TPP+)etc.].ThesesystemshaveseveralpossIBLedisadvantages,includingthe:a)timerequiredtoachieveequilibriumdistributionofamitochondrialmembraneprobe;b)degreeofpassive(unspecific)bindingofprobestoamembranecomponent,suchasinthecaseofNAO,whichdetectsmitochondrialmassasitbindstocardiolipin(9),orRh123,whichhasseveralenergy-independentbindingsites(10),orDiOC6(3)which,notwithstandingitshighcapacitytobindothermembranesthanthoseofmitochondriaanditslowsensitivitytoagentscapableofdepolarizesuchorganelles(11,12),hasbeenwidelyusedinthelastyearsforstudiesonDy;c)toxiceffectsofprobesonmitochondrialfunctionalintegrity;d)samplingprocedures;e)interferencefromlightscatteringchangesandfromabsorptionchangesofmitochondrialcomponents;f)requirementoflargeamountsofBIOLOGicalmaterials.TPPelectrodeaffordsaneasyandprecisetooltomeasureDyduetothe:i)lowinterferencebetweenboundTPP+andthemembrane;andii)lackofresponsesoftheelectrodetospeciesdifferentfromTPP+.However,thismethodrequiresdiscreteamountsofbiologicalsamplesanduptakeofthislipophiliccationbyintactmammaliancellsisindeedaslowprocess.
TodetectvariationsinDyatthesinglecelloratthesingleorganellelevel,afewyearsagowehavedevelopedanewcytofluorimetric(FCM)techniquebyusingthelipophiliccation5,5",6,6"-tetrachloro-1,1",3,3"-tetraethylbenzimidazolcarbocyanineiodide(JC-1)(13-15).JC-1ismoreadvantageousoverrhodaminesandothercarbocyanines,capableofenteringselectivelyintomitochondria,sinceitchangesreversiblyitscolorfromgreentoorangeasmembranepotentialsincrease(overvaluesofabout80-100mV).ThispropertyisduetothereversibleformationofJC-1aggregatesuponmembranepolarizationthatcausesshiftsinemittedlightfrom530nm(i.e.,emissionofJC-1monomericform)to590nm(i.e.,emissionofJ-aggregate)whenexcitedat490nm;thecolorofthedyechangesreversiblyfromgreentogreenishorangeasthemitochondrialmembranebecomesmorepolarized(16-18).Bothcolorscanbedetectedusingthefilterscommonlymountedinallflowcytometers,sothatgreenemissioncanbeanalyzedinfluorescencechannel1(FL1)andgreenishorangeemissioninchannel2(FL2).ThemainadvantageoftheuseofJC-1isthatitcanbebothqualitative,consideringtheshiftfromgreentoorangefluorescenceemission,andquantitative,consideringthepurefluorescenceintensity,whichcanbedetectedinbothFL1andFL2channels.
Clearly,Dyhasbeenpreviouslystudiedbyflowcytometry,mostlybyevaluatingthechangesinfluorescenceintensityofcellsstainedwithdifferent,cationicdyes.ResearchersusedfirstRh123(19-21),thenothermoleculessuchasDiOC6(3)(22).Typically,thesignalcomingfromcellswhosemitochondriahadalowpotentialwasmuchlowerthanthatofcontrolsamples,andinaclassicalhistogramdepolarizedpopulationsgototheleft.However,aftertheshifttotheleftthepeaks(i.e.thatofcontrolsandtreatedcells)arenotalwaysperfectlyseparate,theoperatorhastodecide"byeye"wherethepopulationofcellswithdepolarizedmitochondriabegins.Thesetwofluorescentprobeshavethisandotherproblems.Rh123bindingtomitochondriaisdifficulttocalculatewhenthecellhasacertainmitochondrialheterogeneitydue,forexample,toahighnumberofmatureorimmatureorganelles,asoccursinacontinuouslygrowingcellline.Moreover,differentmitochondrialbindingsitesforRh123exist,i.e.siteswhicharefreelyaccessiblewhatevertheenergystatusofthemitochondriaandsiteswhicharehiddenintheenergizedstateandfreelyaccessibleinthedeenergizedformoftheorganelle.Thishasbeenattributedtodifferentmaturativestatesoftheorganelles.Thus,inasinglecell,organellescanhavedifferentRh123bindingsiteswithconsequentdifferentfluorescenceemissions.Asaresult,itisverydifficulttoascertainwhetherornotmitochondriabindRh123inanenergy-dependentorenergy-independentmanner.However,theprobeisperfectwhenusedinassociationwithpropidiumiodide,asthiscombinationallowsaclearandelegantdistinctionbetweendeadandlivingcells(4).
DiOC6(3)ismorereliableforanalysisofplasmamembranepotentialratherthanforstudiesonDY.Indeed,thefirstapplicationofthisprobeinFCMwasfortheanalysisofplasmamembranepotential(23).Afterthis,DiOC6(3)wasusedinisolatedmitochondriatodetectDychanges(24).Anycationicmoleculegoestonegativesites,andcanbereleasedwhenthenegativechargedecreases.Ifthatmoleculeisfluorescent,thesignaldecreaseswhenthemembranepotentialoftheorganelleislost.Fluorescentmoleculespresentinintactcellshaveadifferentbehaviour.Inourhands,DiOC6(3)reactedproperlywhenU937cellsweretreatedwithFCCP,butsuchbehaviourwasnotobservedincellstreatedwithvalinomycin.Moreover,whencellswerekeptinthepresenceofplasmamembranedepolarizingagentssuchasouabainorhighdosesofextracellularK+,aconsistentdecreaseinDiOC6(3)fluorescencewasnoted,indicatingaconsistentsensitivityoftheprobeforplasmamembrane(12).Thisbehaviourwasnottotallyunexpected,asitisknownthatthisprobecanbindseveralmembranesotherthanmitochondria,asalsoreportedintheHandbookofFluorescentProbesandResearchChemicals(editedbytheCompanythatproducesandsellsthisreagent,i.e.Molecularprobes,Eugene,OR,USA).Thus,usingthisprobe,itisverydifficult,ifnotimpossible,todistinguishbetweendepolarizationofplasmamembraneorchangesinDYinseveralphysiologicalorpathologicalconditions,suchasapoptosis,whenbotheventscantakeplace.
JC-1staining
2.StaincellsUSPensionwith2.5mg/mLJC-1.Shakecellsuspensionuntilthedyeiswelldissolved,givingauniformred-violetcolor.Todothis,itisalsopossibletovortexvigorouslythesuspensionimmediatelyaftertheadditionoftheprobe.
3.Keepthesamplesinadarkplaceatroomtemperaturefor15-20minutes.Thedurationofthestainingdependsuponthecelltype,butinourhandsallthecellsused(lymphocytes,celllinesofdifferentorigin,fibroblasts,keratinocytes,hepatocytes,etc.)respondedquitewelltothetreatment.Washtwicecentrifugingat500gfor5minwithadoublevolumeofPBS.
4.Resuspendin0.3mLofPBS,thenanalyzeimmediatlywiththeflowcytometer,typicallyequippedwitha488nmargonlaser.Setthevalueofphotomultiplier(PMT)detectingthesignalinFL1atabout390V,andFL2PMTat320V;FL1-FL2compensationshouldbearound4.0%,whileFL2-FL1compensationaround10.6%.Thisishowevertheclassicalsettingoftheinstrumentweuseinourlaboratory,andithastobetakenintoaccountthat,aseachinstrumenthasadifferentsensitivity,adifferentsettingcanbenecessarytoobtainanoptimalsignal.Concerninginstruments,thestaininghasbeentestedonseveraldifferentapparatussuchasanExcel,fromCoulter(inBergen,Norway),anElite(Coulter)inParis,someFACSCAN,aFACSTARPlusandaFACSCalibur,fromBectonDickinson(inKrakow,Poland,orModenaandVenice,Italy),aBioradBriteandaPartec(inKrakowtoo),andtheyworkperfectlyaswell.Obviously,compensationshavetobesetinadifferentway.
3.COMMENTARY
3.1BackgroundinformationThetechniqueofJC-1staininghasbeendevelopedwiththeintenttodetectDYinintact,viablecells.ForthispurposeJC-1actsasaMarkerofmitochondrialactivity,sincetheformationofJ-aggregates,whichgiveredemission,isreversible.CellswithhighDYarethoseformingJ-aggregates,thusshowinghighredfluorescence.Ontheotherhand,cellswithlowDYarethoseinwhichJC-1maintains(orre-acquire)monomericform,thusshowingonlygreenfluorescence.NormallygreenfluorescenceofdepolarizedcellsisalittlebithigherthanthatofpolarizedonessimplybecauseofthepresenceofahigheramountofJC-1monomers.
- Duringtheiruse,allreagentsmustbeatroomtemperatureandcarefullycheckedforpH(7.4),sincemitochondrialDYisverysensitivetoalterationsofbothparameters.
Stainingproceduremustbecarriedundernodirectintenselightandincubationinthedark,becausethelightsensitivityofJC-1.
AlwaysweargloveswhenhandlingJC-1.
- 3.2CriticalParameters
TheneedofhighDYfortheformationofJ-aggregatesmakesthisstainingnotsuitableforfixedsamples.Indeed,thistechniquehastobeconsideredasafunctionalitytest.Possibledisadvantagescomefromthewideemissionspectrumofthedye,whichoccupiestwofluorescencechannels,thusavoidingtheuseofotherprobesconjugatedwithFITC(e.g.monoclonalantibodies).ThecouplingwithprobesemittingindeepreddetectableinFL3channelistheoreticallypossible,buthasmanyproblemsincompensatingthedifferentfluorescences,dependingontheparticularemissionspectrumofeachprobe(quenchingphenomenon).Inparticular,usingpropidiumiodideforassessingcellviABIlityincellslabelledwithJC-1cancreateconsistentproblems.
OnlyrecentlycantheAuthorstestthestabilityoftheprobeinlivingcellsfixedafterthestaining.ThiswasdonebecausecellswereinfectedwithHIV-1,anditisstronglyrecommendedtofixsuchcellsbeforerunningthemintoaflowcytometer.Alightfixationwith0.5%formaldeide(fewminutesatroomtemperature)howeverdoesnotchangethefluorescencepattern.
- 3.3Trobleshooting
1.PresenceoffluorescentmoleculesotherthanJC-1inthesample:analyzefirstanonstainedsampleandsettheinstrumentonitsspontaneusfluorescence,thenanalyzethestainedsampleswiththesamesetting.Seealsopoint3.2.
2.Cellsarenotwellstained:increasetheamountofJC-1.Trytostainwithanincubationat37°Cinsteadatroomtemperature.
3.Cellaretoomuchstained:decreasetheamountofJC-1.LeavethecellstostayalittlebitlongerintheJC-1freePBSinordertoallowthedyetoreachtheappropiatedistributionequilibrium.
4.Fluorescencepatterntoomuchwidespread:seepoint3.4.DonotconsideranyeventwithaveryhighFL2fluorescence:veryoftentheyareJC-1aggregates.IncreaseFSCthresholdanddiscarddebriswithelectronicgating:thepresenceofstaineddebrisorbrokencellscanconstituteaconfoundingelementinthewholefluorescencepattern.
3.4AnticipatedresultsItisrecommendedtoperformeachexperimentusinga"positivecontrol"sample,inwhichmitochondriaofallcellshavebeendepolarizedinordertohaveacorrectsettingoftheinstrument.TreatingcellswithdrugsabletocollapseDY,suchastheK+ionophorvalinomycin(100nMormore)ortheprotontranslocatorcarbonylcyanidep-(trifluoromethoxy)phenylhydrazone(FCCP,250nM),resultsinadramaticchangeofthefluorescencedistributionthatindicateswheredepolarizedcellshavetogoandhelpsalotinsettingthecompensation.Forproblemsrelatedtointracellulartraffickinganddrugneutralization,valinomycinworksmuchbetterthanFCCP(andisalsolessexpensive).
Whenthesamplecontainsanheterogeneiccellpopulation,itispossibletoseedifferentfluorescencepatternsduetothevariablecontentinmembranesandmitochondriaofcellsubpopulations.Itistypicalthecaseofperipheralbloodmononuclearcells(PBMC),formedbylymphocytesandmonocytes,thefirstbeingsmallerandwithlessmitochondrialcontentthanthelatter.Accordingly,thefluorescencepatternofJC-1ofsuchsampleshowstwodistinctpeaks,onecorrespondingtolymphocytes,andthesecond,brighterinbothFL1andFL2,correspondingtomonocytes.
Anothergoodcontrolisthatofmitochondrialmass,thatcanbedonewithnonylacridineorange(NAO),thatbindsmitochondriaindependentlyoftheirenergizationstate,andwhosefluorescenceisdetectableinFL1.Typically,cellsareincubatedattheconcentrationof0.5-1x106cells/mLwith10µMNAO(MolecularProbes)for10min.inthedarkatroomtemperature,washedtwiceincoldPBSandimmediatelyanalyzed.Theresultyouobtaingivesyouanideaofthemassofmitochondriapresentwithinacell,andallowsyoutobesurethatthechangesyouseewithapotential-sensitiveprobearenotdependentuponthesimplelossoforganelles.Itiseasytoimaginethatalsointhiscasemonocytesarebrighterthanlymphocytes.
3.5TimeconsiderationsTheprotocolofJC-1stainingdoesnotrequirealongtime(moreorless30minutes).Thedurationofthestainingprocedurecanobviouslyincrease,dependingonthenumberofsamplestobeanalyzed.
3.6Keyreferences
2.SusinS.A.,ZamzamiN.,CastedoM.,DaugasE.,WangH.G.,GeleyS.,FassyF.,ReedJ.C.,KroemerG.Thecentralexecutionerofapoptosis:multipleconnectionsbetweenproteaseactivationandmitochondriainFas/APO-1/CD95-andceramide-inducedapoptosis.J.Exp.Med.,186:25-37,1997.
3.KroemerG.Theproto-oncogeneBcl-2anditsroleinregulatingapoptosis.NatureMed.,3:614-620,1997.
4.CossarizzaA.,KalashnikovaG.,GrassilliE.,ChiappelliF.,SalvioliS.,CapriM.,BarbieriD.,TroianoL.,MontiD.,FranceschiC.Mitochondrialmodificationsduringratthymocyteapoptosis:astudyatthesinglecelllevel.Exp.CellRes.,214:323-330,1994.
5.RichterC.,SchweizerM.,CossarizzaA.,FranceschiC.ControlofapoptosisbythecellularATPlevel.FEBSLett.,378:107-110,1996.
6.GormanA.M.,SamaliA.,McGowanA.J.,CotterT.G.Usefoflowcytometrytechniquesinstudyingmechanismsofapoptosisinleukemiccells.Cytometry,29:97-105,1997.
7.YangJ.,LiuX.,BhallaK.,KimC.N.,IbradoA.M.,CaiJ.,PengT.I.,JonesD.P.,WangX.Preventionofapoptosisbybcl-2:releaseofcytochromecfrommitochondriablocked.Science,275:1129-1132,1997.
8.DeMariaR.,LentiL.,MalisanF.,d"AgostinoF.,TomassiniB.,ZeunerA.,RippoM.R.,TestiR.RequirementforGD3gangliosideinCD95-andceramide-inducedapoptosis.Science,277:1652-1654,1997.
9.MaftahA.,PetitJ.M.,RatinaudM.H.A.J.,R.10-Nnonyl-acridineorange:afluorescentprobewhichstainsmitochondriaindependentlyoftheirenergeticstate.Biochem.Biophys.Res.Commun.,164:185-190,1989.
10.Lopez-MediavillaC.,OrfaoA.,GonzalesM.,MedinaJ.M.Identificationbyflowcytometryoftwodistinctrhodamine-123-stainedmitochondrialpopulationsinratliver.FEBSLett.,254:115-120,1989.
11.TerasakiM.,SongJ.,WongJ.R.,WeissM.J.,ChenB.L.Localizationofendoplasmicreticuluminlivingandglutaraldehyde-fixedcellswithfluorescentdyes.Cell,38:101-108,1984.
12.SalvioliS.,ArdizzoniA.,FranceschiC.,CossarizzaA.JC-1,butnotDiOC6(3)orrhodamine123,isareliablefluorescentprobetoassessDYinintactcells.Implicationsforstudiesonmitochondrialfunctionalityduringapoptosis.FEBSLett.,411:77-82,1997.
13.CossarizzaA.,BaccaraniContriM.,KalashnikovaG.,FranceschiC.AnewmethodforthecytofluorimetricanalysisofmitochondrialmembranepotentialusingtheJ-aggregateforminglipophiliccation5,5",6,6"-tetrachloro-1,1",3,3"-tetraethylbenzimidazolcarbocyanineiodide(JC-1).Biochem.Biophys.Res.Commun.,197:40-45,1993.
14.CossarizzaA.,SalvioliS.,FranceschiniM.G.,KalashnikovaG.,BarbieriD.,MontiD.,GrassilliE.,TropeaF.,TroianoL.,FranceschiC.Mitochondriaandapoptosis:acytofluorimetricapproach.Fund.Clin.Immunol.,3:67-68,1995.
15.CossarizzaA.,CeccarelliD.,MasiniA.Functionalheterogeneityofisolatedmitochondrialpopulationrevealedbycytofluorimetricanalysisatthesingleorganellelevel.Exp.CellRes.,222:84-94,1996.
16.HadaH.,HondaC.,TanemuraH.SpectroscopicstudyontheJ-aggregateofcyaninedyes.I.SpectralchangesofUVbandsconcernedwithJ-aggregateformation.Photogr.Sci.Eng.,21:83-91,1977.
17.ReersM.,SmithT.W.,ChenL.B.J-aggregateformationofacarbocyanineasaquantitativefluorescentindicatorofmembranepotential.Biochemistry,30:4480-4486,1991.
18.SmileyS.T.,ReersM.,Mottola-HartshornC.,LinM.,ChenA.,SmithT.W.,SteeleG.D.,ChenL.B.IntracellularheterogeneityinmitochondrialmembranepotentialrevealedbyaJ-aggregate-forminglipophiliccationJC-1.Proc.Natl.Acad.Sci.USA,88:3671-3675,1991.
19.JohnsonL.V.,WalshM.L.,BockusB.J.,ChenL.B.Monitoringofrelativemitochondrialmembranepotentialinlivingcellsbyfluorescencemicroscopy.J.CellBiol.,88:526-535,1981.
20.GoldsteinS.,KorczackL.B.Statusofmitochondriainlivinghumanfibroblastsduringgrowthandsenescenceinvitro:useofthelaserdyerhodamine123.J.CellBiol.,91:392-398,1981.
21.DarzynkiewiczZ.,Staiano-CoicoL.,MelamedM.R.Increasedmitochondrialuptakeofrhodamine123duringlymphocytestimulation.Proc.Natl.Acad.Sci.USA,78:2383-2387,1981.
22.PetitP.X.,LecoeurH.,ZornE.,DauguetC.,MignotteB.,GougeonM.-L.Alterationsinmitochondrialstructureandfunctionareearlyeventsofdexamethasone-inducedthymocyteapoptosis.J.CellBiol.,130:157-167,1995.
23.JenssenH.-L.,RedmannK.,MixE.Flowcytometricestimationoftransmembranepotentialofmacrophages-Acomparisonwithmicroelectrodemeasurements.Cytometry,7:339-346,1986.
24.PetitP.X.,O"ConnorD.,GrunwaldD.,BrownS.C.Analysisofthemembranepotentialofrat-andmouse-livermitochondriabyflowcytometryandpossibleapplications.Eur.J.Biochem.,194:389-397,1990.
Appendix1:Stocksolution:JC-1isdissolvedinN,N’-dimethylformamide(Sigma-Aldrich,cat.n.D8654)attheconcentrationof2.5mg/ml.
Itisstoredat-20°C.Lightsensitive.
Appendix2:Reagents
JC-1MolecularProbes,Eugene,OR,USA | catalogNo.:T-3168 |
Note:colturemedium,salinesolutionsandwashingbuffersaredependingonthecelltypewhichisusedfortheexperimentalprocedure(PBMC,fibroblasts,hepatocytes,etc.).Forbloodwhitecells,RPMI1640with10%heatinactivatedfoetalcalfserum,100IU/mlpenicillin,100mg/mlstreptomycin,2mML-glutamineisnormallyusedascompletecolturemedium.
Appendix3:Equipment
FlowCabinetTC60 | Gelaire |
FlowCytometerFACScan | BectonDickinson |
IncubatorCO2-AUTO-ZERO | Heraeus |
CentrifugeMinifugeRF | Heraeus |
PipetmanP20,P200,P1000 | Gilson |
VortexVibrofixVF1Electronic | Janke&Kunkel-IkaLabortechnik |
Appendix4:Glossary
Mitochondrialmembranepotential(Dy)isgeneratedbymitochondrialelectrontransportchain,whichdrivesaprotonflowfrommatrixthroughinnermitochondrialmembranetocytoplasm,thuscreatinganelectrochemicalgradient.ThisgradientisinturnresponsiblefortheformationofATPmoleculesbyF0-F1ATPsynthase.ForthisreasonDyisanimportantparameterformitochondrialfunctionalityandanindirectevidenceofenergystatusofthecell.
================ 蚂蚁淘在线 ================
免责声明:本文仅代表作者个人观点,与本网无关。其创作性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不做任何保证或承诺,请读者仅作参考,并请自行核实相关内容
版权声明:未经蚂蚁淘在线授权不得转载、摘编或利用其他方式使用上述作品。已经经本网授权使用作品的,应该授权范围内使用,并注明“来源:蚂蚁淘在线”。违反上述声明者,本网将追究其相关法律责任。