RNA修饰酶

RNA加工修饰

RNA加工修饰,主要加工方式是切断和碱基修饰,真核生物tRNA前体一般无生物学特性,需要进行加工修饰。

  • 中文名

  • RNA加工修饰

  • 所属领域

  • 生物学

  • 加工方式

  • 切断和碱基修饰

  • 相关名词

  • 转录后加工

目录
  1. 1mRNA转录加工

  2. 加帽

  3. 加尾

  1. 剪接

  2. 内部甲基化

  3. 2tRNA转录加工

  1. 3rRNA转录加工

RNA加工修饰mRNA转录加工

RNA加工修饰加帽

即在mRNA的5'-端加上m7GTP的结构。此过程发生在细胞核内,即对HnRNA进行加帽。加工过程首先是在磷酸酶的作用下,将5'-端的磷酸基水解,然后再加上鸟苷三磷酸,形成GpppN的结构,再对G进行甲基化。

RNA加工修饰加尾

这一过程也是细胞核内完成,首先由核酸外切酶切去3'-端一些过剩的核苷酸,然后再加入polyA。

RNA加工修饰剪接

真核生物中的结构基因基本上都是断裂基因。结构基因中能够指导多肽合成的编码顺序被称为外显子,而

不能指导多肽链合成的非编码顺序就被称为内含子。真核生物HnRNA的剪接一般需snRNA参与构成的核蛋白体参加,通过形成套索状结构而将内含子切除掉。

RNA加工修饰内部甲基化

由甲基化酶催化,对某些碱基进行甲基化处理。

RNA加工修饰tRNA转录加工

主要加工方式是切断和碱基修饰。

RNA加工修饰4RNA加工修饰4

真核生物tRNA前体一般无生物学特性,需要进行加工修饰。加工过程包括:

(1)剪切和拼接

tRNA前体在tRNA剪切酶作用下,切成一定大小的分子。大肠杆菌RnaseP特异切割tRNA前体5′旁侧序列,3′-核酸内切酶如RnaseF可将tRNA前体3′端一段序列切下来。RnaseD可水解3′端多余核甘酸。剪切后的tRNA分子在拼接酶作用下,将成熟tRNA分子所需片断拼接起来。

(2)稀有碱基的生成

1)甲基化:例如在tRNA甲基转移酶的催化下,某些嘌呤生成甲基嘌呤。

2)还原反应:某些尿嘧啶还原为双氢尿嘧啶(DHU)。

3)核苷内的转位反应:如尿嘧啶核苷转位为假尿嘧啶核苷。

4)脱氨反应:某些腺苷酸脱氨成为次黄嘌呤(Ⅰ),次黄嘌呤是颇常见于tRNA中的稀有碱基之一。

(3)加上CCA-OH3′-末端:在核苷酸转移酶的作用下,在3′-末端删去个别碱基后,换上tRNA统一的CCA-3′-末端,完成柄环结构。

RNA加工修饰rRNA转录加工

主要加工方式是切断。

真核细胞的rRNA基因(rDNA)属于一种被称为丰富基因(redundantgene)族的DNA的序列,即染色体上一些相似或完全一样的纵列串联基因(tandemgene)单位的重复。由不能转录的间隔区(spacer)把这些单位分隔开。在这里,间隔区与内含子是不同的概念。在分类上,rDNA这种类型的序列被称为高度重复序列(highlyrepeatsequence)DNA。在不同的种属生物中,rDNA的大小不一,重复单位由数百个至数千个以上。每个重复单位的可转录段从7kb至13kb不等,间隔区为数千bp。虽然有间隔区与重复单位的大小不同,但是真核生物最后转录出来的rRNA大小相同。

RNA加工修饰1RNA加工修饰1

真核生物核蛋白体中有18S、5.8S、28S及5SrRNA。5SrRNA独立于其他三种rRNA的基因转录,在成熟过程中加工甚少。45SrRNA前体中包含18S、5.8S、28srRNA。45SrRNA经剪接后,先分离出属于核蛋白小体的18S-rRNA。余下部分在拼接成5.8S和28S的rRNA。rRNA成熟后,在核仁上装配,与核蛋白体蛋白一起形成核蛋白体,输出胞浆。静止状态的细胞,rRNA的寿命较短,而生长中的细胞,rRNA比较稳定。

1982年,T.R.Ceck在研究一种叫四膜虫(Tetrahymena)的简单真核生物rRNA剪接中发现rRNA前体剪接是一种自我剪接(self-splicing)方式,即RNA本身也有催化作用。一般而言,剪接的化学反应过程包括磷酸二酯键的断裂和再连接。大多数的mRNA剪接需要并接体参与,这种核蛋白起酶的作用。但在四膜虫rRNA的剪接过程中,去除所有蛋白质,剪接仍可迅速完成。通过研究rRNA的结构,发现了一定的规律,就是根据四膜虫的rRNA一级结构绘出的二级结构。图中用粗线表示5’-端和3’-端要被剪切删除的部分,并列出l了5’-端的部分碱基序列。,在图上可见到形成众多的局部双链区,这是由于线性的RNA分子有很多的反向互补序,此为能进行自我剪接的结构基础。

rRNA的剪接不需要任何蛋白质参与即可发生,这就说明了RNA本身即具有酶的催化作用。因而把具有酶促活性的RNA命名为核酶(ribozyme)。

目前已知的一个最简单的能进行自我剪接的RNA的结构,如图所示。因为二级结构与锤头相似,因此将其命名为锤头结构(hammer-headstructure),这是核酶能起作用的结构基础。这属于分子内催化,同一分子上包括有催化部分和底物部分,催化部分即为锤头结构,至少3个茎(stem),1至3个环(loop)。碱基部分至少13个是一致性(consensus)序列,用A,C,G,U标出,其余书写为N的是指任何碱基均可。底物部分即为箭头所示附近的核苷酸,含有GU序列。

RNA加工修饰2RNA加工修饰2

1983年S.Altman等又发现RnaseP中RNA组分可以催化tRNA前体的加工。通过以上研究工作,认为RNA具有酶活力,此发现具有重大生物学意义。首先,打破了酶是蛋白质的传统观念,对传统酶学提出挑战,对于如何给酶下一个更准确的定义,还有待进一步探讨;其次,对于在生命起源中,为先有核酸,还是先有蛋白质这一有争议的问题,提供了线索。

具有实际意义的是:人们根据核酶的特殊结构,设想用人工合成的小片段RNA,配合在欲破坏其结构的RNA或DNA分子上,使其成为锤头结构,此即为人工设计的核酶。人工核酶用于研究上,把核酸分子切成特异性片段,已经获得了成功。进一步设想,用人工设计的核酶来破坏一些有害基因转录出的mRNA或其前体,从而抗癌及抗病毒。因此,核酶的发现有广阔的应用前景。

  • ,,

================  蚂蚁淘在线  ================

免责声明:本文仅代表作者个人观点,与本网无关。其创作性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不做任何保证或承诺,请读者仅作参考,并请自行核实相关内容

版权声明:未经蚂蚁淘在线授权不得转载、摘编或利用其他方式使用上述作品。已经经本网授权使用作品的,应该授权范围内使用,并注明“来源:蚂蚁淘在线”。违反上述声明者,本网将追究其相关法律责任。