Angiostatin is a single-chain, proteolytic fragment of glu-plasminogen which has a molecular weight of about 38,000. It is a potent inhibitor of angiogenesis and was first identified and isolated from the serum and urine of tumor bearing mice (1). The mouse protein reportedly extends from threonine-98 through valine-440 (numbering from the NH2-terminus of glu-plasminogen). This fragment of mouse plasminogen, as well as the human equivalent, includes four out of the five kringle domains of plasminogen (1).
The inhibition of angiogenesis by angiostatin is directly related to inhibiting the proliferation of endothelial cells (1,2). Because tumor growth is known to be angiogenesis dependent, it was initially hypothesized that the inhibitory properties of angiostatin would have clinical utility in arresting various cancers that are expressed as solid tumors. Studies performed in animal model systems have since demonstrated that recombinant angiostatin effectively suppresses tumor growth and metastasis (3,4).
Numerous enzymes have been identified which will convert plasminogen to angiostatin or at least to angiostatin-like fragments. The enzymes include several matrix metalloproteinases as well as urokinase and a tumor cell-derived reductase (5-10). The precise enzyme or mechanism which is responsible for the formation of angiostatin in vivo is unknown and it is believed that there may be multiple pathways for the conversion of plasminogen to angiostatin.
Structure/function studies have indicated that the first three kringle domains (and not the fourth) are responsible for the inhibitory properties of angiostatin, and that removal of the fourth kringle domain may actually yield a more potent inhibitor (11).
HTI’s "angiostatin" product is produced by limited proteolysis of purified human glu-plasminogen using a proprietary enzyme preparation. The NH2-terminal sequence of this fragment is identical to human glu-plasminogen (Glu-1) and the molecule terminates at proline-452 thus making it larger than the "natural" or elastase derived product with an apparent molecular weight of about 50,000. Like authentic angiostatin, this product demonstrates an antiproliferative effect when tested in a growth factor-induced endothelial cell proliferation assay. The product is formulated in 20mM Hepes, 0.15M NaCl, pH 7.4, and should be stored frozen at -70oC or below.
Haemtech Biopharma可以运行多种分析技术,以提供对蛋白质药物产品或物质的生化分析,或帮助进行污染物鉴定。我们的测定,测试和技术菜单包括:应用领域IVIG药物的血栓形成性过程中杂质分析与止血有关的抗药物抗体测试(免疫原性)例如抗凝血因子抗体宿主细胞蛋白质的鉴定,定量和缓解在制品和在制品中药品的稳定性和释放测试与止血相关的重组蛋白的效力和纯度测定血浆蛋白分析蛋白质的结构表征翻译后修饰二硫键映射构象变化凝血测定试剂(例如凝血活酶)的表征定制的凝血产品检测应用药代动力学研究分析鉴定/验证工艺/产品验证蛋白质纯化方法的发展强迫降解研究方法高效液相色谱反相(RPC)大小排除(SEC)离子交换(IEC)疏水相互作用(HIC)金属亲和力(IMAC)蛋白质A(用于IVIG分析)SDS页面减少和不减少一维和二维考马斯亮蓝染色银染荧光染色免疫印迹多重分析定量化凝血测定因子分析(II,V,VII,VIII,IX,X,XI,XII,XIII等)PTPTPT行动计划福尔摩斯测试其他ELISA法各种显色测定因子分析(II,V,VII,VIII,IX,X,XI,XII,XIII等)其他翻译后修饰分析糖基化,硫酸化,磷酸化,羟基化,脱酰胺,乙酰化,氧化,氨基甲酸酯化和γ-羧化凝血酶生成测定对于IVIG和其他抗药物抗体ELISA(ADA)抗原料药抗体抗宿主细胞蛋白的抗体抗污染物或分解产物的抗体鉴定未知质谱N端测序残留水分测定顶空真空测量pH值渗透压折光率总蛋白质配方评估