- [08-06]临床研究中PK和BE有什么区别?问答
- [08-02]如何高效准确地完成临床研究
- [02-05]临床试验与临床治疗的区别探析
- [08-14]体外诊断试剂临床试验IVD(杭州)培训课件2017.10器械注册蒲公英...
- [07-21]非干预性临床试验_非干预性临床试验【价格,厂家,图片,批发,采购】_...
- [02-28]科素亚临床研究
- [01-19]比较不错的定制旅游公司有哪些啊?想体验下定制旅游,但是知道的...
- [07-23]以下核心期刊哪些比较容易发表? 论文投稿 投稿求助 ...
- [02-25]做细胞培养板,需要做TC处理,TC处理的原理是什么?
Detection and Measurement of Radioactivity
Alphaemittersreleaseaparticlecomposedof2neutronsand2protons.Theatomicnumberisthereforereducedby2,andtheatomicmassby4.Alphaparticlesaresoheavythatevenwithlowvelocitytheirmomentumishigh.Theydon"ttravelfar,butwhentheycollidewithothermoleculestheydoalotofdamage,thereforealphaemittersareconsideredtobequitehazardous. Whenabetaparticleemitterdecays,oneofitsextraneutronsisconvertedtoaproton,increasingitsatomicnumberby1withoutchangingitsatomicmass.Thebreakdownisaccompaniedbytheemissionofanegativelychargedparticleoflowmass,calledthebetaparticle,andanunchargedparticleoflowmass,calledaneutrino.Forexample,hydrogenconsistsofjustoneprotonandoneelectron.Deuterium(2-H),acomponentof"heavywater,"consistsofaproton,anelectron,andoneneutron,andisastableisotope.Tritium(3-H)isanunstableisotopeofhydrogen,consistingofaproton,anelectron,andtwoneutrons.Whenanatomoftritiumdecays,oneoftheneutronsisconvertedtoaproton,onebetaparticleandoneneutrinoarereleased,andaheliumisotope(3-He)remains.Tritiumiscalleda"soft"betaemitter,becauseitsbetaparticleshaverelativelylowvelocities.Ahardbetaemittersuchas32-P(phosphorous)ismoredangerousbecauseitsbetaparticlescarrymorekineticenergy(howeveritiseasiertodetect-readon). GammaraysconsistofelectromagneticradiationresemblingX-rays.Anexampleofagammaemitteris131-I(iodine).Gammaradiationmayaccompanyeitheralphaorbetaparticleemission. AtraditionalunitofradioactivityistheCurie(Ci),whichisdefinedasthatquantityofanyradioisotopeundergoing2.22x10^12atomicdisintegrationsperminute(DPM).AmilliCurie(mCi)ofaradioisotopeundergoes2.22x109DPM,andamicroCurieproduces2.22x10^6DPM.Since1975,thebecquerel(Bq)hasreplacedtheCurieasthepreferredinternationalunitofradioactivity.OneBqisdefinedasoneatomicdisintegrationpersecond,or2.703x10^-11dpm.WorkingamountsinalaboratorymightbedescribedinmicroCuriesormilliCuries,kiloBecqerelsormegaBecquerels. Whentheproductofanatomicdisintegrationisastableisotope,atomicdecayleaveslessradioactivematerialbehind.Therefore,astimepasses,theamountofactivitydeclineslogarithmically.Thehalf-lifeofaradioisotopeisthetimeittakesforone-halfoftheunstableatomstodisintegrate.Eachradioisotopehasacharacteristicrateofdecayandpatternofradiation.Forexample,14-Cisalowenergybetaemitterwithahalflifeof5500years. Aradioisotope,oranycompoundthatcontainsaradioisotope,issaidtoberadiolabeledandiscalledaradionuclide.Thespecificactivityofaradionuclideistheamountofradioactivity,BqorCi,permoleofthecompound.Clearly,asradioactivedecayproceeds,thespecificactivityofanyradionuclidedeclines. Photographicfilmcanbeexposedbyalltypesofradiation,andisusedtomonitorexposureofpersonnelworkingwithhighenergyemitters.AvisIBLetrackinacloudorbubblechambercanpickupradioactivity,ascanacalorimeteriftheenergyemittedisquitehigh. Aproblemwithmanymethodsofdetectionisthattheenergyoftheemittermustbehighenoughtotravelsomedistancethroughair.Theparticlesemittedbymanyradionuclides,especially14-Cand3-Hlabeledcompounds,donottravelasignificantdistanceinair,butposeadangerifinternalizedbecauseoftheirproximitytomoleculessuchasDNA.Forexample,abetaparticleemittedbytritiumcannotpenetrateasheetofpaper,yettritiuminthebodyfluidscanposeasignificanthazard.Aliquidscintillationdetectorcanpickupradiationfrom"soft"betaemittersaswellasfromotherradioisotopes.Anionizingparticleisallowedtopassthroughacrystalorliquidphosphor,whichabsorbsitsenergyandre-emitstheenergyasflashesoflight.Usuallytheemittermustbedissolvedinliquidcontainingtheluminescentcompound,sothatthedistancetraveledbytheparticleisveryshort. Inliquidscintillationcounting,thematerialcontainingradioisotopesisdissolvedinanorganicsolventcontaininganaromaticsolute(thescintillant).Whenradioactivedecaytakesplace,theenergyofabetaparticleistransferredbycollisiontoanelectronintheshellofthescintillant,excitingthatelectron.Theelectronthenreturnstoitsgroundstate,releasingaphoton.Theenergytransfercanbefrombetaparticletosolventtoscintillant,ordirectlytothescintillant,andusuallytherearemultiplecollisionsperbparticle.Thenumberofphotonsemittedfollowingeachatomicdisintegrationisproportionaltotheenergyofthereleasedbetaparticle. Nowhereishowthedetectionsystemworks.Thevialisloweredintoadarkchamberwithphotoelectricdetectorsoneachside.Each"flash"receivedbythedetectorscorrespondstooneatomicdisintegration.Thedetectorsareconnected,viaphotomultipliertubes,toamicroprocessorunitthatrecordsnotonlyeachevent,butalsothenumberofphotonsdetectedduringeachevent(brightnessoftheflash).Atbriefintervals,suchas1/100second,theinstrumentcalculatesthenumberofflashesperunittime,displayingthemascountsperminute,orCPM. Unfortunately,therearetwomorelittleproblems.Noinstrumentiscapableofrecordingalloftheatomicdisintegrationswithinascintillationvial.Becauseofthegeometryofthevialandphotoelectricdetectorssomeeventsgoundetected.Themaximumefficiencywithwhichalowenergyemittersuchastritiumcanbedetectedisabout70%.Worseyet,theenergyofsomephotonsisabsorbedbychemicalsinthesolventbeforethephotoncanreachthedetector.Thelatterphenomenonisknownasquenching.Withthechemicalquenchingthatistypicalofmostexperiments,theusualcountingefficiencyfortritiumis30to40%,andsometimesmuchless.Theamountofquenchingcanvaryfromsampletosample,thereforeitisoftennecessarytoestimatetheefficiencyofcountingforeachindividualsample. Rememberthattheamountoflightdetectedisproportionaltotheenergyofthebetaparticlethatwasreleasedbythedisintegratingnucleus.Whenyoupreparetocountsamples,youselectappropriate"windows",thatis,rangesoflightintensitythattheinstrumentwillrecordascounts.Theinstrumentrecordstheamountoflightdetectedfollowinganevent,andifthatamountiswithintheenergyrangeforaparticularwindow,theeventisrecordedasonecount.Itisignoredifitfallsoutsidetheselectedrange.Eachwindowisgivenachannelnumber,andthecountforeachwindowisgivenasCPMforthecorrespondingchannel. Asquenchingtakesplace,theenergyrecordedforeacheventislessthanitwouldbeforanunquenchedsample,sinceforeacheventtheenergyofsomephotonsisabsorbedbeforedetectionispossible.Theenergyspectrumisshiftedtotheleft,andthegreaterthequenchingthegreatertheshift.Astheshifttakesplace,theratioofcountsinchannel2tocountsinchannel1becomessmaller.Thatratioisknownasthesamplechannelsratio,orSCR. CountingefficiencyispositivelyrelatedtotheSCR.TogetaconversionfactorbetweenSCRandefficiency,equalknownamountsoftheisotopeareaddedtoaseriesofvials.Progressivelygreateramountsofaquenchingagent,suchascarbontetrachloride,areaddedtoeachvial.ThevialsarecountedandCPMisdividedbyknownDPMtogetthefractionalefficiencyofcounting.Forexample,ifavialwith20,000DPMoftritiumyields5,000CPM,thefractionalefficiencyofcountingwas5,000/20,000=0.25,thatis,25%oftheatomicdisintegrationsweredetected.FractionalefficiencyisplottedversusSCRtoyieldaquenchcurve.TheinstrumentprintsoutCPMandSCRforeachsample,thereforetogetactualDPMinasampletheinvestigatormust(1)subtractbackgroundCPMfromtheCPMforthesample,(2)determinefractionalefficiencyfromtheSCRforthesample,and(3)dividenetCPMbythefractionalefficiency. Example.Youarecountingsamplescontaining14-C.Sample#1givesyouchannel1CPMof1323.Thebackgroundcountswere23CPMandtheSCRwas0.5.Fromthequenchcurve,anSCRof0.5correspondstoanefficiencyof0.93.Thentheestimatedamountofradioactivityinthesampleis(1323-23)/0.93=1398DPM. Thereareotherproblemsassociatedwiththemeasurementofradioactivitythatarenotsoeasilysolved.However,forsinglelabelexperimentsthequenchcorrectionisallyouneed.Reviewthespecialsafetycautionsforradioisotopework,andyouarereadytogo. Preliminaryinformationmayincludethedate,time,useri.d.,andprogramselected.Commoncountingparametersareusuallylisted.Theparametersmayinclude:numberoftimeseachsampleiscounted;timeperiodofcountingeachsample;numberoftimestheentiresetofsamplesiscounted;typeofquenchcorrection;windowsselected;specialfeaturessuchascriteriaforcuttingshortacountifcountsareveryhigh,orautomaticbackgroundsubtract.Thepreliminaryinformationmustindicatethatthecountingparameterswereappropriateforyourtypeofsamples. Theinformationsuppliedforeachsampletypicallyincludes:samplei.d.,whichmaybepositionnumberinarack,positioninorderofcounting,orboth;channelnumbers(windows)andcorrespondingcountsperminute;timeofcounting;elapsedtimesincetherunwasstarted(thisisimportantforradioisotopeswithveryshorthalflives);samplechannelsratioorothermeasureofquenching.RADIoactiveDecay
Isotopesofagivenelementhavenucleiwiththesamenumberofprotonsbutdifferentnumbersofneutrons.Someisotopesarestable,howeverradioisotopesareunstableanddisintegrate,withtheemissionofthreemaintypesofradiation.Methodsofdetection
Themethodemployedtodetectradiationdependsonthetypeofemitterandtheintendedpurposeofdetection.Themostwellknownmethodofdetectingradiationiswithanionizationchamber.Ahighenergyparticlecandislodgeelectronsfromtheatomsitstrikes,producingpairsofions.Particlesareallowedtopassbetweenparallelplates,onewithapositivechargeandonewithanegativecharge.Asionizationtakesplacetheionseachmovetotheplatewiththeoppositecharge,producingacurrent.Thecurrentisreadonameter.TheGeiger-Muellercounterisbasedontheionizationdetectionprinciple.Liquidscintillationcounting
Theamountofkineticenergyinabetaparticlediffersfromonedecaytothenext.However,eachradioisotopehasatypicalenergyspectrum,thatis,apredictablerangeofenergies.Typicalenergyspectrafordifferentradioisotopescanberadicallydifferentinshapeandmagnitude,aswiththecommonlyused14-Cand3-H.BackgroundandQuenching
Nodetectionsystemperfect,ofcourse.Inliquidscintillationcounting,cosmicrays,betaparticlesfromdecayingpotassiumintheglassvial,spontaneousdischargesfromtheverysensitivephotodetectors,andchemicalsdissolvedinthescintillationfluidallcancontributetospontaneousflashesoflightthatarerecordedascounts.TheCPMattributabletosuchsourcesarecalledbackground.Backgroundcountsareoftensolowrelativetotheactivitybeingmeasuredthattheyareignored.Howeverifthenumberof"real"countsislow,backgroundcountscancontributetoexperimentalerror.Itisagoodpracticetoincludeavialcontainingeverythingexceptaddedradioactivityasacontroltodeterminethebackgroundlevel.BackgroundCPMarethensubtracteddirectlyfromtheCPMfortheexperimentalsamples.Thescintillationcounterprintout
Modernscintillationcountershaveaconveyorsystemthatautomaticallyfeedssamplesinorderintothecountingchamber.Aseachsampleiscountedtherelevantinformationisprinted.Atypicalprintoutincludespreliminaryinformationfollowedbyspecificinformationonasamplebysamplebasis.Everymanufacturerusesadifferentsystemoftermsandabbreviations,soeitheryouwillneedaccesstotheinstrumentmanualortheprintoutfromyourinstrumentwillhavetobetranslatedbyanexperiencedindividual.
================ 蚂蚁淘在线 ================
免责声明:本文仅代表作者个人观点,与本网无关。其创作性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不做任何保证或承诺,请读者仅作参考,并请自行核实相关内容
版权声明:未经蚂蚁淘在线授权不得转载、摘编或利用其他方式使用上述作品。已经经本网授权使用作品的,应该授权范围内使用,并注明“来源:蚂蚁淘在线”。违反上述声明者,本网将追究其相关法律责任。