Von Willebrand factor (vWF) is a multimeric plasma glycoprotein that is required for normal hemostatic platelet plug formation (1-8). The mature plasma protein is composed of apparently identical subunits (Mr=260,000) which are held together by disulfide bonds. The circulating vWF molecule ranges in size from dimers (Mr=520,000) to extremely large multimers (Mr>10,000,000). During normal hemostasis, the larger multimers of vWF are responsible for facilitating platelet plug formation by forming a bridge between platelet glycoprotein IB and exposed collagen in the subendothelium (9-14). Either a lack of vWF protein or the presence of abnormalities which result in decreased polymerization may cause a loss of biological activity which is characteristic of von Willebrand"s disease.
In addition to its role in platelet plug formation, vWF is also responsible for the binding and transport of factor VIII (antihemophilic factor) in plasma (15). It appears that this latter event is responsible for both the stability and effective delivery of functional factor VIII. Studies indicate that factor VIII binds to the NH2-terminal portion of the mature vWF subunit with a stoichiometry of one factor VIII molecule per vWF monomer (16,17).
The single chain vWF monomer contains a large number of cysteine residues at both the NH2-terminal and COOH-terminal ends, which are involved in the multimer formation. Carbohydrate analyses indicate that nearly 15% of the mass of vWF is contributed by carbohydrate (18). It appears that the carbohydrate serves to protect vWF from proteolysis, but is not necessary for functional activity or multimer formation.
vWF is prepared from citrated human plasma using a combination of the procedures described by Thorell (19), and Lollar (20). A factor VIII "free" vWF preparation, further purified to ensure removal of factor VIII procoagulant activity (antigen still present), is also available. The preparations are >95% pure as judged by SDS-PAGE under reducing conditions, and consist of large multimers as determined by electrophoresis in SDS/agarose gels. The protein is shipped frozen in 0.025M sodium citrate, 0.1M glycine, 0.1M NaCl, pH 6.8, for storage at -70°C.
Haemtech Biopharma可以运行多种分析技术,以提供对蛋白质药物产品或物质的生化分析,或帮助进行污染物鉴定。我们的测定,测试和技术菜单包括:应用领域IVIG药物的血栓形成性过程中杂质分析与止血有关的抗药物抗体测试(免疫原性)例如抗凝血因子抗体宿主细胞蛋白质的鉴定,定量和缓解在制品和在制品中药品的稳定性和释放测试与止血相关的重组蛋白的效力和纯度测定血浆蛋白分析蛋白质的结构表征翻译后修饰二硫键映射构象变化凝血测定试剂(例如凝血活酶)的表征定制的凝血产品检测应用药代动力学研究分析鉴定/验证工艺/产品验证蛋白质纯化方法的发展强迫降解研究方法高效液相色谱反相(RPC)大小排除(SEC)离子交换(IEC)疏水相互作用(HIC)金属亲和力(IMAC)蛋白质A(用于IVIG分析)SDS页面减少和不减少一维和二维考马斯亮蓝染色银染荧光染色免疫印迹多重分析定量化凝血测定因子分析(II,V,VII,VIII,IX,X,XI,XII,XIII等)PTPTPT行动计划福尔摩斯测试其他ELISA法各种显色测定因子分析(II,V,VII,VIII,IX,X,XI,XII,XIII等)其他翻译后修饰分析糖基化,硫酸化,磷酸化,羟基化,脱酰胺,乙酰化,氧化,氨基甲酸酯化和γ-羧化凝血酶生成测定对于IVIG和其他抗药物抗体ELISA(ADA)抗原料药抗体抗宿主细胞蛋白的抗体抗污染物或分解产物的抗体鉴定未知质谱N端测序残留水分测定顶空真空测量pH值渗透压折光率总蛋白质配方评估