Product Name | Phytochelatin 3, PC3(γE - C)3 - G |
Size | 1 mg |
Catalog # | AS-60790 |
US$ | $136 |
Purity | % Peak Area By HPLC ≥ 95% |
A glutathione-derived heavy metal-detoxifying peptide of higher plants consisting of 3 units of γGlu-Cys. | |
Detailed Information | DatasheetMaterial Safety Data Sheets (MSDS) |
Storage | -20°C |
References | Grill, E. et al. Science 230, 674 (1985); Rauser, WE. Plant Physiol. 109, 1141 (1995). |
Molecular Weight | 772.9 |
(γE-C)3-G | |
Sequence(Three-Letter Code) | H - γ - Glu - Cys - γ - Glu - Cys - γ - Glu - Cys - Gly - OH |
Product Citations | Mohan, T. et al. (2016).Cytokinin Determines Thiol-Mediated Arsenic Tolerance and Accumulation.ASPGDOI: https://doi.org/10.1104/pp.16.00372Dresler, S. et al. (2014). Effect of cadmium on selected physiological and morphological parameters in metallicolous and non-metallicolous populations of Echium vulgare . Ecotoxicol Environ Safety 104, 332. doi: 10.1016/j.ecoenv.2014.03.019.Fischer, S. et al. (2014). Analysis of plant Pb tolerance at realistic submicromolar concentrations demonstrates the role of phytochelatin synthesis for Pb detoxification. Environ Sci Technol 48, 7552. doi: 10.1021/es405234p.Ke, C-Y. et al. (2014). Understanding of thiol-induced etching of luminescent gold nanoclusters. RSC Adv 4, 26050. doi: 10.1039/C4RA02111H. Spisso, AA. et al. (2014). Characterization of Hg-phytochelatins complexes in vines (Vitis vinifera cv Malbec) as defense mechanism against metal stress.BioMetals 27, 591.Zhang, W. et al. (2014). NMR-based metabolomics and LC-MS/MS quantification reveal metal-specific tolerance and redox homeostasis in Chlorella vulgaris. Mol BioSyst 10, 149. doi: 10.1039/C3MB70425D.Abboud, P. and KJ. Wilkinson. (2013). Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii. Environ Pollution 179, 33. doi:10.1016/j.envpol.2013.03.047Miszczak, A. et al. (2013). SEC ICP MS and CZE ICP MS investigation of medium and high molecular weight complexes formed by cadmium ions with phytochelatins. Anal Bioanal Chem 405, 4667. doi: 10.1007/s00216-013-6868-3.Rigouin, C. et al. (2013). Characterization of the phytochelatin synthase from the human parasitic nematode Ancylostoma ceylanicum.Mol Biochem Parasitol 191, 1. doi: 10.1016/j.molbiopara.2013.07.003.Akhter, MF. et al. (2012). Reduced translocation of cadmium from roots is associated with increased production of phytochelatins and their precursors. J Plant Physiol 169, 1821. doi: 10.1016/j.plaphy.2011.10.007.Fernández, R. et al. (2012). Lead accumulation and synthesis of non-protein thiolic peptides in selected clones of Melilotus alba and Melilotus officinalis. Environ Exp Botany 78, 18. doi: 10.1016/j.envexpbot.2011.12.016.Lavoie, M. et al. (2012). The influence of pH on algal cell membrane permeability and its implications for the uptake of lipophilic metal complexes. J Phycol 48, 293. doi: 10.1111/j.1529-8817.2012.01126.xSantini, O., et al. (2012). Phytochelatins in the freshwater bivalve Anodonta cygnea." Effects of copper on calcium metabolism and detoxification mechanisms in freshwater bivalve species of Anodonta: 108.Shen, C-C. et al. (2012). Selective extraction of thiol-containing peptides in seawater using Tween 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence. J Chromatogr A 1220, 162. doi: 10.1016/j.chroma.2011.11.057.Wu, Y. and W-X. Wang. (2012). Thiol compounds induction kinetics in marine phytoplankton during and after mercury exposure. J Haz Mat 217, 271. doi: 10.1016/j.jhazmat.2012.03.024.Zeng, X-W. et al. (2011). Effects of Zn on plant tolerance and non-protein thiol accumulation in Zn hyperaccumulator Arabis paniculata Franch. Environ Exp Botany 70, 227. doi: 10.1016/j.envexpbot.2010.09.009.Andra, SS. et al. (2009). Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry. Environ. Pollut. 157, 2173.Simmons, DBD. et al. (2009). Identification and quantification of glutathione and phytochelatins from Chlorella vulgaris by RP-HPLC ESI-MS/MS and oxygen-free extraction. Anal Bioanal Chem 395, 809.Wang, M-J. and W-X. Wang. (2009). Cadmium in three marine phytoplankton: accumulation, subcellular fate and thiol induction. Aquatic Toxicol 95, 99. doi: 10.1016/j.aquatox.2009.08.006.Mendoza-Cozatl, DG. et al. (2008). Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J. 54, 249.Minocha, R. et al. (2008). Separation and quantification of monothiols and phytochelatins from a wide variety of cell cultures and tissues of trees and other plants using high performance liquid chromatography. J. Chromatogr. A 1207, 72.Zeng, X. et al. (2008). Responses of non-protein thiols to Cd exposure in Cd hyperaccumulator Arabis paniculata Franch. Environ. Exp. Botany 66, 242.Miao, AJ. & WX. Wang (2007). Predicting copper toxicity with its intracellular or subcellular concentration and the thiol synthesis in a marine diatom. Environ. Sci. Technol. 41, 1777. |