Tris(phenylpyrazole)iridium, known as Ir(ppz)3, features a small lowest-unoccupied molecular orbital (LUMO) of around 1.6 eV. It has been normally used as an electron-blocking layer (EBL) in organic light-emitting diodes and other organic electronic devices( e.g. organic photovoltaics)
It has also been reported that Ir(ppz)3 doping can enhance low wavelength optical-absorption capacity, and that doping a small amount of Ir(ppz)3 can also improve the crystallinity of P3HT. Moreover, the large energy barrier between Ir(ppz)3 and the polymer active layer (which can reduce the electron current densities and increase the hole current densities) indicates a more balanced carrier transport based on hole- and electron-only devices [2]
General Information
CAS number
562824-31-1
Chemical formula
C27H21IrN6
Molecular weight
621.71 g/mol
Absorption
λmax 321 nm (2-MeTHF) [1]
Fluorescence
λem 414 nm (2-MeTHF)
HOMO/LUMO
HOMO = 5.0 eV, LUMO = 1.6 eV
Synonyms
Tris(1-phenylpyrazolato)iridium
Tris(phenylpyrazole)iridium
Classification / Family
Iridium complex, Electron blocking layer (EBL) materials, Hole transport layer (HTL) materials, Organic Light-Emitting Diodes (OLEDs), Organic photovoltaics, Organic electronics
Product Details
Purity
>99.5% (sublimed)
Melting point
No data available
Appearance
Light yellow powder/crystals
*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.
*For chemical structure information please refer to the cited references.
Characterisation
Pricing
Grade
Order Code
Quantity
Price
Sublimed (>99% purity)
M721
100 mg
£177.00
Sublimed (>99% purity)
M721
250 mg
£354.00
MSDS Documentation
Ir(ppz)3 MSDS sheet
Literature and Reviews
Blue and Near-UV Phosphorescence from Iridium Complexes with Cyclometalated Pyrazolyl or N-Heterocyclic Carbene Ligands, T. Sajoto et al., Inorg. Chem., 44 (22), 7992-8003(2005); DOI: 10.1021/ic051296i.
Performance Improvement in Poly(3-hexylthiophene):[6,6]-Phenyl C61 Butyric Acid Methyl Ester Polymer Solar Cell by Doping Wide-Gap Material Tris(phenylpyrazole)iridium, C-S. Ho et al., Appl. Phys. Express 6, 042301 (2013); http://dx.doi.org/10.7567/APEX.6.042301.
Flexible top-emitting warm-white organic light-emitting diodes with highly luminous performances and extremely stable chromaticity, H. Shi et al., Org. Electronics 15 (2014) 1465–1475; doi:10.1016/j.orgel.2014.03.031.
Hybrid white organic light-emitting diodes with improved color stability and negligible efficiency roll-off based on blue fluorescence and yellow phosphorescence, X. Wang et al., J. Luminescene, 137, 59–63 (2013); http://dx.doi.org/10.1016/j.jlumin.2012.12.031.
Luminous efficiency enhancement in blue phosphorescent organic light-emitting diodes with an electron confinement layers, J-S. Kang et al., Optical Materials 47, 78–82 (2015); doi:10.1016/j.optmat.2015.07.003.
Towards Highly Efficient Blue-Phosphorescent Organic Light-Emitting Diodes with Low Operating Voltage and Excellent Efficiency Stability, C. Han et al., Chem. Eur. J., 17, 445 – 449 (2011); DOI: 10.1002/chem.201001981.
Tailoring the Efficiencies and Spectra of White Organic Light-Emitting Diodes with the Interlayers, G. Xie et al., J. Phys. Chem. C 2011, 115, 264–269; DOI: 10.1021/jp107319e.
Highly efficient and color-stable white organic light-emitting diode based on a novel blue phosphorescent host, Q. Wu et al., Syn. Metals 187, 160– 164 (2014); http://dx.doi.org/10.1016/j.synthmet.2013.11.010.
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.
About Ossila
Founded in 2009 by organic electronics research scientists, Ossila aims to provide the components, equipment, and materials to enable intelligent and efficient scientific research and discovery. Over a decade on, we're proud to supply our products to over 1000 different institutions in over 80 countries globally.
With decades of academic and industrial experience in developing organic and thin-film LEDs, photovoltaics, and FETs, we know how long it takes to establish a reliable and efficient device fabrication and testing process. As such, we have developed coherent packages of products and services - enabling researchers to jump-start their organic electronics development program.
The Ossila Guarantee
Free Worldwide Shipping
Eligible orders ship free to anywhere in the world
Fast Secure Dispatch
Rapid dispatch on in-stock items via secure tracked courier services
Quality Assured
Backed up by our free two year warranty on all equipment
Clear Upfront Pricing
Clear pricing in over 30 currencies with no hidden costs
Large Order Discounts
Save 8% on orders over $10,300.00 and 10% on orders over $12,900.00
Expert Support
Our in-house scientists and engineers are always ready to help
Trusted Worldwide
Great products and service. Have already recommended to many people.
Dr. Gregory Welch, University of Calgary
Wonderful company with reasonably priced products and so customer-friendly!
Shahriar Anwar, Arizona State University
The Ossila Team
Prof. David Lidzey - Chairman
As professor of physics at the University of Sheffield, Prof. David Lidzey heads the university’s Electronic and Photonic Molecular Materials research group (EPMM). During his career, David has worked in both academic and technical environments, with his main areas of research including hybrid organic-inorganic semiconductor materials and devices, organic photonic devices and structures and solution processed photovoltaic devices. Throughout his academic career, he has authored over 220 peer-reviewed papers.
Dr. James Kingsley - Managing Director
James is a co-founder and managing director of Ossila. With a PhD in quantum mechanics/nanotech and over 12 years’ experience in organic electronics, his work on the fabrication throughput of organic photovoltaics led to the formation of Ossila and the establishment of a strong guiding ethos: to speed up the pace of scientific discovery. James is particularly interested in developing innovative equipment and improving the accessibility of new materials for solution-processable photovoltaics and hybrid organic-inorganic devices.
Dr. Alastair Buckley - Technical Director
Alastair is a lecturer of Physics at the University of Sheffield, specialising in organic electronics and photonics. He is also a member of the EPMM research group with a focus on understanding and applying the intrinsic advantages of functional organic materials to a range of optoelectronic devices. Alastair’s experience has not been gained solely in academia; he previously led the R&D team at MicroEmissive Displays and therefore has extensive technical experience in OLED displays. He is also the editor and contributor of "Organic Light-Emitting Diodes" by Elsevier.
Our Research Scientists
Our research scientists and product developers have significant experience in the synthesis and processing of materials and the fabrication and testing of devices. The vision behind Ossila is to share this experience with academic and industrial researchers alike, and to make their research more efficient. By providing products and services that take the hard work out of the device fabrication process, and the equipment to enable accurate, rapid testing, we can free scientists to focus on what they do best - science.
Customer Care Team
The customer care team is responsible for the customer journey at Ossila. From creating and providing quotes, through to procurement and inventory management, the customer care team is devoted to providing first class customer service. The general day to day responsibilities of a customer care team member involves processing customers orders and price queries, answering customer enquiries, arranging the shipment of parcels and notifying customers of updates on their orders.
Collaborations and Partnerships
Please contact the customer care team for all enquires, including technical questions about Ossila products or for advice on fabrication and measurement processes.
Location and Facilities
Ossila is based at the Solpro Business Park in Attercliffe, Sheffield.
We operate a purpose-built synthetic chemistry and device testing laboratory on site, where all of our high-purity, batch-specific polymers and other formulations are made. This is complemented by a dedicated suite of thin-film and organic electronics testing and analysis tools within the device fabrication cluster housed in a class 1000 cleanroom in the EPSRC National Epitaxy Facility in Sheffield.
All our electronic equipment is manufactured on-site.