F4TCNQ is one of the most widely used and most effective p-type dopants due to its strong electron-accepting ability and the extended π system. It has a deep LUMO level (-5.2 eV) which is energetically in the vicinity of the HOMO level of many organic semiconductors. Doping is facilitated by charge transfer from the HOMO level of the host to the LUMO of the dopant molecule. Pin devices with F4TCNQ doped 4,4",4""-tris(3-methylphenylphenylamino)triphenylamine (m-MTDATA) serving as the p-doped HTL show high luminance and efficiency at extremely low operating voltages: For instance, a luminance of 1000 cd/m2 is reached at a voltage of 2.9 V [1].
It has been reported that by controlling the doping concentration, the PCE of the PCDTBT:F4TCNQ solar cells increased from 6.41% to 7.94%, mainly due to improving the photocurrent with a F4TCNQ weight ratio of the blend lower than 0.5% [2]. F4TCNQ is also used as the p-type dopant for graphenes [3,4].
Fluorinated compounds, p-type dopant, Strong electron acceptor, Hole-injection materials, Hole-transport layer material, OLEDs, Polymer Solar Cells, Perovskite Solar Cells, OFETs.
Product Details
Purity
>99% (sublimed)
Melting point
291 °C (DSC onset)
Appearance
Brown-yellow powder
*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.
Chemical structure of 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ)
*For chemical structure information, please refer to the cited references.
Characterisation
DSC trace of 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ).
Pricing
Grade
Order Code
Quantity
Price
Sublimed (>99% purity)
M351
100 mg
£80.00
Sublimed (>99% purity)
M351
250 mg
£172.00
Sublimed (>99% purity)
M351
500 mg
£276.00
Sublimed (>99% purity)
M351
1 g
£432.00
Sublimed (>99% purity)
M351
5 g
£1840.00
Sublimed (>99% purity)
M351
10 g
£3200.00
Literature and Reviews
Low-voltage organic electroluminescent devices using pin structures, J. Huang et al., Appl. Phys. Lett. 80, 139 (2002); https://dx.doi.org/10.1063/1.1432110.
Molecular Doping Enhances Photoconductivity in Polymer Bulk Heterojunction Solar Cells, Y. Zhang et al., Adv. Mater., 25, 7038–7044 (2013).
Band Gap Opening of Bilayer Graphene by F4-TCNQ Molecular Doping and Externally Applied Electric Field, X. Tian et al., J. Phys. Chem. B, 114 (35), 11377–11381 (2010).
p-type doping of graphene with F4-TCNQ, H. Pinto et al., J. Phys.: Condens. Matter 21, 402001 (2009), stacks.iop.org/JPhysCM/21/402001.
Very high-efficiency and low voltage phosphorescent organic light-emitting diodes based on a p-i-n junction, G. He et al., J. Appl. Phys. 95, 5773 (2004); https://dx.doi.org/10.1063/1.1702143.
Novel organic electron injection layer for efficient and stable organic light emitting diodes, R. Grover et al., J. Luminescence, 146, 53–56 (2014). https://dx.doi.org/10.1016/j.jlumin.2013.09.004.
Light outcoupling efficiency enhancement in organic light emitting diodes using an organic scattering layer, R. Grover et al., Phys. Status Solidi RRL 8 (1), 81–85 (2014). DOI: 10.1002/pssr.201308133.
Efficient single-emitting layer hybrid white organic light-emitting diodes with low efficiency roll-off, stable color and extremely high luminance, B. Liu et al., J. Ind.&Eng. Chem., 30, 85–91 (2015); https://dx.doi.org/10.1016/j.jiec.2015.05.006.
Conductive cooling in white organic light emitting diode for enhanced efficiency and life time,P. Tyagi et al., Appl. Phys. Lett. 106, 013301 (2015); https://dx.doi.org/10.1063/1.4903800.
Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells, Q. Wang et al., Nano Energy 15, 275–280 (2015); doi:10.1016/j.nanoen.2015.04.029.
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.
About Ossila
Founded in 2009 by organic electronics research scientists, Ossila aims to provide the components, equipment, and materials to enable intelligent and efficient scientific research and discovery. Over a decade on, we're proud to supply our products to over 1000 different institutions in over 80 countries globally.
With decades of academic and industrial experience in developing organic and thin-film LEDs, photovoltaics, and FETs, we know how long it takes to establish a reliable and efficient device fabrication and testing process. As such, we have developed coherent packages of products and services - enabling researchers to jump-start their organic electronics development program.
The Ossila Guarantee
Free Worldwide Shipping
Eligible orders ship free to anywhere in the world
Fast Secure Dispatch
Rapid dispatch on in-stock items via secure tracked courier services
Quality Assured
Backed up by our free two year warranty on all equipment
Clear Upfront Pricing
Clear pricing in over 30 currencies with no hidden costs
Large Order Discounts
Save 8% on orders over $10,300.00 and 10% on orders over $12,900.00
Expert Support
Our in-house scientists and engineers are always ready to help
Trusted Worldwide
Great products and service. Have already recommended to many people.
Dr. Gregory Welch, University of Calgary
Wonderful company with reasonably priced products and so customer-friendly!
Shahriar Anwar, Arizona State University
The Ossila Team
Prof. David Lidzey - Chairman
As professor of physics at the University of Sheffield, Prof. David Lidzey heads the university’s Electronic and Photonic Molecular Materials research group (EPMM). During his career, David has worked in both academic and technical environments, with his main areas of research including hybrid organic-inorganic semiconductor materials and devices, organic photonic devices and structures and solution processed photovoltaic devices. Throughout his academic career, he has authored over 220 peer-reviewed papers.
Dr. James Kingsley - Managing Director
James is a co-founder and managing director of Ossila. With a PhD in quantum mechanics/nanotech and over 12 years’ experience in organic electronics, his work on the fabrication throughput of organic photovoltaics led to the formation of Ossila and the establishment of a strong guiding ethos: to speed up the pace of scientific discovery. James is particularly interested in developing innovative equipment and improving the accessibility of new materials for solution-processable photovoltaics and hybrid organic-inorganic devices.
Dr. Alastair Buckley - Technical Director
Alastair is a lecturer of Physics at the University of Sheffield, specialising in organic electronics and photonics. He is also a member of the EPMM research group with a focus on understanding and applying the intrinsic advantages of functional organic materials to a range of optoelectronic devices. Alastair’s experience has not been gained solely in academia; he previously led the R&D team at MicroEmissive Displays and therefore has extensive technical experience in OLED displays. He is also the editor and contributor of "Organic Light-Emitting Diodes" by Elsevier.
Our Research Scientists
Our research scientists and product developers have significant experience in the synthesis and processing of materials and the fabrication and testing of devices. The vision behind Ossila is to share this experience with academic and industrial researchers alike, and to make their research more efficient. By providing products and services that take the hard work out of the device fabrication process, and the equipment to enable accurate, rapid testing, we can free scientists to focus on what they do best - science.
Customer Care Team
The customer care team is responsible for the customer journey at Ossila. From creating and providing quotes, through to procurement and inventory management, the customer care team is devoted to providing first class customer service. The general day to day responsibilities of a customer care team member involves processing customers orders and price queries, answering customer enquiries, arranging the shipment of parcels and notifying customers of updates on their orders.
Collaborations and Partnerships
Please contact the customer care team for all enquires, including technical questions about Ossila products or for advice on fabrication and measurement processes.
Location and Facilities
Ossila is based at the Solpro Business Park in Attercliffe, Sheffield.
We operate a purpose-built synthetic chemistry and device testing laboratory on site, where all of our high-purity, batch-specific polymers and other formulations are made. This is complemented by a dedicated suite of thin-film and organic electronics testing and analysis tools within the device fabrication cluster housed in a class 1000 cleanroom in the EPSRC National Epitaxy Facility in Sheffield.
All our electronic equipment is manufactured on-site.