品牌咨询
联系方式
公司地址
苏州工业园区生物纳米园A4#216
联系电话
4000-520-616 / 18915418616
传真号码
0512-67156496
电子邮箱
info@ebiomall.com
公司网址
https://www.ebiomall.com

Ossila/Perovskite Precursor Ink (for Air Processing)/10 x 0.5 ml (5 ml total)/I101

价格
¥3000.00
货号:I101
浏览量:127
品牌:Ossila
服务
全国联保
正品保证
正规发票
签订合同
商品描述

I101 perovskite Ink has been specially formulated in the Ossila laboratories to be deposited by spin coating. Our I101 perovskite ink is designed for air processing in low-humidity environments. Using a mixture of methyl ammonium iodide (MAI) and lead chloride (PbCl) dissolved in dimethyl formamide our I101 perovskite ink will convert to a methylammonium lead halide perovskite under heat. The final product is a methylammonium lead iodide perovskite with trace amounts of chlorine given by the formula CH3NH3PbI3-xClx. For information on the various applications of the mixed halide CH3NH3PbI3-xClx perovskite see our applications section.

The main use of CH3NH3PbI3-xClx is in the fabrication of solar cells, our I101 ink can be used in both standard and inverted architectures; and can achieve power conversion efficiency (PCE) values of over 13% (see our device performance section for more information). The ink specifications can be found below along with complete guides on the processing of perovskite inks for standard architecture and inverted architectures. Using our I101 recipe provided, 5ml of solution is capable of processing up to 160 substrates (1,280 devices using our 8-pixel substrate design).

Now selling bulk orders of 30ml with a 25% discount over our standard order sizes.

 

Perovskite Ink

I101 is packaged as 10 individual vials containing 0.5 ml of solution capable of coating up to 160 substrates. I101 can also be bought in bulk (30 ml) with a 25% discount over our standard order sizes.

 

Specifications

 

Perovskite Type

CH3NH3PbI3-xClx

Precursor Materials

Methyl Ammonium Iodide (99.9%), Lead Chloride (99.999%)

Precursor Ratio

3:1

Solvent

Dimethyl Formamide (99.8%)

Optical Bandgap

1.56-1.59eV

Energy Levels

Valence Band Minimum 5.4eV, Conduction Band Minimum 3.9eV

Emission Peak

770-780nm (PL); 755-770nm (EL)

Standard Architecture PCE

13.7% Peak; 13.0% ±0.25% Average

Inverted Architecture PCE

13.1% Peak; 11.9% ±0.50% Average

Processing Conditions

Air processing; low humidity (20% to 35%)

Packaging

10x 0.5ml sealed amber vials; 3 x 10ml sealed amber vials

 

I101 Perovskite Applications

Perovskite Photovoltaics

The single biggest application of perovskite materials is for photovoltaic devices; perovskites fabricated from MAI:PbCl precursors have been used in several papers to achieve high power conversion efficiencies. The advantage of using MAI:PbCl as precursor materials is the ability to process in an ambient environment.

References

  • Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. J. Snaith et. al. Science. 338 (2012) 643-647 DOI: 10.1126/science.1228604
  • Additive enhanced crystallization of solution-processed perovskite for highly efficient planar- heterojunction solar cells. K-Y. Jen et. al. Adv. Mater. 26 (2014) 3748-3754 DOI: 10.1002/adma.201400231
  • Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. J. Snaith et. al. 24 (2014) 151-157 DOI: 10.1002/adfm.201302090

 

Perovskite LED and Lasing

Due to the high photoluminescence quantum yield of perovskites at room temperature, the application of these materials in light-emitting diodes (LEDs) is of great interest. Devices made using MAI:PbCl precursors show strong emission in the near-infrared region at 755nm. Additionally, recent work has shown lasing within this material.

References

  • Bright light-emitting diodes based on organometal halide perovskite. R. H. Friend et. al. Nature Nanotechnology, 9 (2014) 687-692 doi:10.1038/nnano.2014.149
  • Interfacial control towards efficient and low-voltage perovskite light-emitting diodes. Hang et. al. Adv. Mater. 27 (2015) 2311-2316 DOI: 10.1002/adma.201405217
  • High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. H. Friend et. al. J. Phys. Chem. Lett. 5 (2014)1421-1426 DOI: 10.1021/jz5005285

 

Scale-Up Processing

Due to the ability to process perovskites based upon MAI:PbCl precursors in air, the material opens up the possibility of applications in large-scale deposition techniques. Several different scalable techniques, such as slot-die coating and spray coating have been used to deposit this material.

References

  • Upscaling of perovskite solar cells: Fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. C. Krebs et. al. Adv. Energy Mater. 5 (2015) 1500569 DOI: 10.1002/aenm.201500569
  • Highly efficient, felixble, indium-free perovskite solar cells employing metallic substrates, M. Watson et. al. J. Mater. Chem. A, 3 (2015) 9141-9145 DOI: 10.1039/C5TA01755F
  • Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. G. Lidzey et. al. Energy Environ. Sci. 7 (2014) 2944-2950 DOI: 10.1039/C4EE01546K

 

I101 Perovskite Processing Guides

Standard Architecture:

FTO/TiO2(Compact)/TiO2(Mesoporous)/I101/Spiro-OMeTAD/Au

Below is a condensed summary of our fabrication routine for standard architecture devices using our I101 ink.

 

  1. FTO etching:
  • A complete guide to FTO etching can be found on our FTO product page along with an instructional video
  1. Substrate cleaning:
  • Sonicate FTO for 5 minutes in hot (70°C) DI water with the addition of 1% Hellmanex
  • Dump-rinse twice in boiling DI water
  • Sonicate FTO for 5 minutes in Isopropyl alcohol
  • Dump-rinse twice in boiling DI water
  • Dry FTO using filtered compressed gas
  • Place the FTO into the UV Ozone Cleaner and leave for 10 minutes
  1. Compact TiO2 deposition:
  • Prepare a solution of titanium diisopropoxide bis(acetylacetonate) at a volumetric percentage of 8% in isopropyl alcohol (approximately 20ml will be needed)
  • Mask off the substrates such that only the active area of the devices are exposed
  • Place the substrates onto a hotplate set to 450°C
  • Using a nitrogen/compressed air gun set it to a pressure of 16-18 psi and spray the solution onto the substrates. Leave the solution for 30 seconds to dry, and sinter and repeat the spray process again. Repeat this until you get approximately 40 nm of film, this should take around 10 sprays
  • Cover the substrates loosely with foil and leave to sinter for 30 minutes
  • After sintering remove the substrates from the hotplate, care should be taken as rapid cooling can shatter the substrate
  1. Mesoporous TiO2 deposition:
  • Using a mesoporous paste with a particle size of 18nm and pore size of 30nm, prepare a mesoporous film of approximately 200 nm thick
  • Place the substrates back on the hotplate, loosely cover with foil and sinter the substrates at 450°C for 1 hour
  • After sintering remove the substrates from the hotplate, care should be taken as rapid cooling can shatter the substrate
  1. Perovskite deposition (in air):
  • Heat I101 ink for at least 2 hours at 70°C to allow for complete redissolution of solutes
  • Allow I101 ink to cool to room temperature before deposition
  • Set the hotplate temperature to 90°C
  • Static spin coating: place substrate into spin coater, dispense 30-50 μl and start spinning at 2000 rpm for 30 s
  • Place substrate onto the hotplate and anneal for 120 minutes
  • After annealing, transfer the substrates into a glove box environment.
  1. Spiro-OMeTAD deposition (in air):
  • Prepare the following solutions; Spiro-OMeTAD at a concentration of 97 mg/ml in chlorobenzene, Li-TFSI at a concentration of 175 mg/ml in acetonitrile, and TBP at a volumetric percentage of 46.6% in acetonitrile
  • Combine 1000 μl Spiro-OMeTAD, 30.2 μl Li-TFSI, and 9.7 μl TBP solutions
  • Dispense 50 µl of the combined solution onto the perovskite, allowing it to spread across the substrate
  • Spin at 2000 rpm for 30 seconds
  • Use a high-precision mirco cleaning swab soaked in chlorobenzene to wipe the cathode strip clean
  1. Spiro-OMeTAD oxidation and anode deposition:
  • Place the substrates inside a desiccator in air and leave the substrates for 12 hours in the dark to allow for oxidation of the spiro-OMeTAD film (The amount of time required for complete oxidation of the spiro-OMeTAD may vary depending upon thickness and environmental conditions. Additional oxidation steps may be needed after deposition of anode)
  • Using thermal evaporation, deposit an 80 nm layer of gold through a shadow mask to define an active area for your device
  • Devices do not need to be encapsulated for measuring performance
  • If encapsulation is desired, the spiro-OMeTAD should be allowed to fully oxidise again before substrates are transferred into the glove box and encapsulated

 

Inverted Architecture:

ITO/PEDOT:PSS/I101/PC70BM/Ca/Al

For a complete step-by-step guide please see our full perovskite solar cells fabrication guide or our instructional video guide below.

Below is a condensed summary of our routine, which is also available to download as a PDF to enable you to print and laminate for use in the clean room.

 

  1. Substrate cleaning:
  • See substrate cleaning section of standard architecture device guide
  1. PEDOT:PSS deposition:
  • Filter PEDOT:PSS using a 0.45 µm PES filter
  • Dispense 35 µl of the filtered PEDOT:PSS solution onto ITO spinning at 6000 rpm for 30s
  • Place substrate onto a hotplate at 120°C
  • After all ITO substrates are coated, reduce the hotplate temperature to 90°C
  1. Perovskite deposition (in air):
  • Heat I101 ink for at least 2 hours at 70°C to allow for complete re-dissolution of solutes
  • Transfer heated substrate onto spin coater, start spinning at 4000 rpm and dispense 30 μl of I101 ink and leave to spin for 30 s
  • Place substrate back onto the hotplate at 90°C for 120 minutes
  • After annealing transfer the substrates into a glove box environment.
  1. PC70BM deposition (in nitrogen glove box):
  • Prepare a solution of PC70BM at 50 mg/ml in chlorobenzene and stir for 3 to 5 hours
  • Transfer perovskite-coated substrates into the glove box
  • Dispense 20 µl of PC70BM solution onto the spinning substrate at 1000 rpm and spin for 30s
  • Use a micro-precision cleaning swab soaked in chlorobenzene to wipe the cathode strip clean
  1. Cathode deposition:
  • Using thermal evaporation, sequentially deposit 5 nm of calcium and 100 nm of aluminium through a shadow mask to define an active area for your device
  • Encapsulate devices using a glass coverslip and encapsulation epoxy
  • Expose to UV radiation (350 nm) for ~5 minutes (times vary depending upon source intensity) to set the epoxy

 

 

Full length fabrication guide detailing all steps necessary for the fabrication and measurement of perovskite solar cells using Ossila I101 Perovskite Precursor Ink.

 

I101 Device Performance

Below is information on photovoltaic devices fabricated using our standard architecture and inverted architecture recipes for I101 inks. All scans were taken after 10 minutes under illumination of an AM1.5 source, using a voltage sweep from -1.2 V to 1.2 V then from 1.2 V to -1.2 V at a rate of 0.2 V.s-1; no bias soaking was performed on devices.

ArchitectureStandardInverted
Sweep DirectionForwardReverseForwardReverse
Power Conversion Efficiency (%)13.513.712.413.1
Short Circuit Current (mA.cm-2)-20.8-20.8-18.8-18.8
Open Circuit Voltage (V)0.880.900.960.96
Fill Factor (%)73736972

 

I101 standard and inverted architecture perovskite solar celll iv curves
JV curve under AM1.5 irradiation for a standard (left, courtesy of Michael Stringer-Wong, University of Sheffield) and inverted (right, courtesy of Alex Barrows, University of Sheffield) device based on Ossila"s I101 ink. Device characteristics were recorded on a reverse sweep.

 

To the best of our knowledge, the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.

    About Ossila Founded in 2009 by organic electronics research scientists, Ossila aims to provide the components, equipment, and materials to enable intelligent and efficient scientific research and discovery. Over a decade on, we're proud to supply our products to over 1000 different institutions in over 80 countries globally. With decades of academic and industrial experience in developing organic and thin-film LEDs, photovoltaics, and FETs, we know how long it takes to establish a reliable and efficient device fabrication and testing process. As such, we have developed coherent packages of products and services - enabling researchers to jump-start their organic electronics development program. The Ossila Guarantee Free Worldwide Shipping Eligible orders ship free to anywhere in the world Fast Secure Dispatch Rapid dispatch on in-stock items via secure tracked courier services Quality Assured Backed up by our free two year warranty on all equipment Clear Upfront Pricing Clear pricing in over 30 currencies with no hidden costs Large Order Discounts Save 8% on orders over $10,300.00 and 10% on orders over $12,900.00 Expert Support Our in-house scientists and engineers are always ready to help Trusted Worldwide Great products and service. Have already recommended to many people. Dr. Gregory Welch, University of Calgary Wonderful company with reasonably priced products and so customer-friendly! Shahriar Anwar, Arizona State University The Ossila Team Prof. David Lidzey - Chairman As professor of physics at the University of Sheffield, Prof. David Lidzey heads the university’s Electronic and Photonic Molecular Materials research group (EPMM). During his career, David has worked in both academic and technical environments, with his main areas of research including hybrid organic-inorganic semiconductor materials and devices, organic photonic devices and structures and solution processed photovoltaic devices. Throughout his academic career, he has authored over 220 peer-reviewed papers. Dr. James Kingsley - Managing Director James is a co-founder and managing director of Ossila. With a PhD in quantum mechanics/nanotech and over 12 years’ experience in organic electronics, his work on the fabrication throughput of organic photovoltaics led to the formation of Ossila and the establishment of a strong guiding ethos: to speed up the pace of scientific discovery. James is particularly interested in developing innovative equipment and improving the accessibility of new materials for solution-processable photovoltaics and hybrid organic-inorganic devices. Dr. Alastair Buckley - Technical Director Alastair is a lecturer of Physics at the University of Sheffield, specialising in organic electronics and photonics. He is also a member of the EPMM research group with a focus on understanding and applying the intrinsic advantages of functional organic materials to a range of optoelectronic devices. Alastair’s experience has not been gained solely in academia; he previously led the R&D team at MicroEmissive Displays and therefore has extensive technical experience in OLED displays. He is also the editor and contributor of "Organic Light-Emitting Diodes" by Elsevier. Our Research Scientists Our research scientists and product developers have significant experience in the synthesis and processing of materials and the fabrication and testing of devices. The vision behind Ossila is to share this experience with academic and industrial researchers alike, and to make their research more efficient. By providing products and services that take the hard work out of the device fabrication process, and the equipment to enable accurate, rapid testing, we can free scientists to focus on what they do best - science. Customer Care Team The customer care team is responsible for the customer journey at Ossila. From creating and providing quotes, through to procurement and inventory management, the customer care team is devoted to providing first class customer service. The general day to day responsibilities of a customer care team member involves processing customers orders and price queries, answering customer enquiries, arranging the shipment of parcels and notifying customers of updates on their orders. Collaborations and Partnerships Please contact the customer care team for all enquires, including technical questions about Ossila products or for advice on fabrication and measurement processes. Location and Facilities Ossila is based at the Solpro Business Park in Attercliffe, Sheffield. We operate a purpose-built synthetic chemistry and device testing laboratory on site, where all of our high-purity, batch-specific polymers and other formulations are made. This is complemented by a dedicated suite of thin-film and organic electronics testing and analysis tools within the device fabrication cluster housed in a class 1000 cleanroom in the EPSRC National Epitaxy Facility in Sheffield. All our electronic equipment is manufactured on-site.