品牌咨询
联系方式
公司地址
苏州工业园区生物纳米园A4#216
联系电话
4000-520-616 / 18915418616
传真号码
0512-67156496
电子邮箱
info@ebiomall.com
公司网址
https://www.ebiomall.com

Ossila/Perovskite Quantum Dots | Buy Low Price Quantum Dots/Chloride\/Bromide (450 nm) \/ CsPbCl1.5Br1.5 in toluene (10mg\/ml) \/ 5 ml/Bromide (450 nm) \/ CsPbCl1.5Br1.5 in toluene (10mg\/ml) \/ 10 ml

价格
面议
货号:Bromide(450nm)\/CsPbCl1.5Br1.5intoluene(10mg\/ml)\/
浏览量:120
品牌:Ossila
服务
全国联保
正品保证
正规发票
签订合同
商品描述

CaesiumLeadperovskiteQuantumdotsofchloride/bromide(450nm,blue),bromide(515nm,green)andiodide(685nm,red)arenowavailable.

Perovskitequantumdotsaresemiconductingnanocrystals.Comparedtometalchalcogenidequantumdots,perovskitequantumdotsaremoretoleranttodefectsandhaveexcellentphotoluminescencequantumyieldsandhighcolourpurity.ThesepropertiesarehighlydesirableforelectronicandoptoelectronicapplicationsandhenceperovskitequantumdotshavehugepotentialforrealworldapplicationsincludingLEDdisplaysandquantumdotsolarcells.

ossilasupplieshighquality,lowpriceperovskitequantumdotsfrom£200.00.

Full spectrum perovskite quantum dots
Fullspectrumrangeofperovskitequantumdotscomingsoon

Whatisaquantumdot?

Aquantumdot(QD),orsemiconductingnanocrystal(NC),isasinglecrystalofasemiconductingmaterialmeasuringonlyafewnanometresindiameter.Whenexcited,thesmallsizeofthecrystalactsa‘quantumbox’andconfineselectronsandholesinanvolumesmallerthanthecorrespondingexcitonBohrrADIus.Thesmallerthedot,thegreatertheconfinementenergyandthehighertheenergyofphotonsthatareabsorbedoremitted.

Themostwell-studiedquantumdotsaremetalchalcogenidequantumdotsbasedonsemiconductorssuchascadmiumselenide,indiumphosphideorLead(II)sulfide.ThebandgapofsuchquantumdotscanbetunedthroughouttheentirevisIBLespectrumsimplybychangingtheirsizeduringchemicalsynthesis.

Forthehighestphotoluminescencequantumyields(PLQYs),acore/shellstructureisusuallyrequired.Inthisarrangement,asecondsemiconductorisusedtoencapsulatethenanocrystal(e.g.CdSe/CdS,InP/ZnS).Thismaterialpassivatessurfacedefectsoftheemissivecorewhichwouldotherwiseactasnon-radiativerecombinationsitesforexcitons.

DuetotheirhighPLQY,relativeeaseoffabricationandwideemission-colourtunABIlity,quantumdotshavingthistypeofstructureareespeciallysuitableforapplicationindisplayandimagingtechnologies-andarealreadyappearingincommercialproductssuchastelevisions.

Perovskite Quantum Dot Photoluminescence Spectra
Thephotoluminescenceemissionwavelengthcanbetunedbyvaryingtheratioofhalidespresentwithinthequantumdot.Bycarefulselectiontheemissioncanbevariedfrom400nmto700nm.

Whatisaperovskitequantumdot?

Anewclassofquantumdotisemergingbasedonperovskites.ThesehavealreadybeenshowntohavepropertiesrivallingorexceedingthoseofmetalchalcogenideQDs.

Duetotheiroutstandingphotovoltaicperformance,perovskitesarereceivingsignificantattentionfromtheresearchcommunity.Recently,hasbeenshownthatreducingthedimensionsofaperovskitecrystaldowntoafewnanometresresultsinthecreationofquantumdotswithveryhighphotoluminescencequantumyieldsandexcellentcolourpurity(i.e.narrowemissionlinewidthsof~10nmforblueemittersand40nmforredemitters[1]).

Thesequantumdotsarehighlytoleranttodefects,astheyrequirenopassivationofthesurfacetoretaintheirhighPLQY.Althoughdefectandtrapsitesarepresent,theirenergiesarepositionedoutsidethebandgapandareeitherlocatedwithintheconductionorvalencebands[2].SuchperovskitenanocrystalsaresimpletosynthesiseinacolloidalsUSPensionandareeasilyintegratedintooptoelectronicdevicesusingreadilyavailableprocessingtechniques,makingthemastrongcontenderforfuturetechnologies.

Size,Properties,andStructure

  • 99%puritywithPhotoluminescenceQuantumYieldof60–70%
  • EmissionPeakat515nmandEmissionLinewidth(FWHM)of21nm
  • Cubiccrystalstructurewithtypicalsize4-15nm

Formoreinformation,pleaseseethepropertiestab.

PerovskiteQuantumDotApplications

Perovskitequantumdotsarecurrentlylesswellresearchedthanothertypesofquantumdot.However,theyhaveshowngreat potentialforarangeofdifferentapplicationsinoptoelectronicsandnanotechnology.Forexample, perovskitequantumdotshavebeenusedtocreatesolarcellshavingpowerconversionefficienciesthatexceedthatofcomparabledevicesbasedonmoreconventionalsemiconductornanocrystalmaterials.

Potentialapplicationsforperovskitequantumdotsinclude:

  • LightEmittingDiodes
  • SolarCells
  • SinglePhotonSources
  • X-RayDetectors
  • Lasers
  • Photodetectors
  • QuantumComputing
  • Cellimaging
  • Cancermapping

Formoreinformation,pleaseseetheapplicationstab.

TechnicalData

CsPbBr3PerovskiteQuantumDots

CASnumber15243-48-8
ChemicalformulaCsPbBr3
Molecularweight579.82 g/mol
FullnameCaesiumleadtribromidequantumdots
SynonymsCaesiumleadbromidequantumdots
Classification/FamilyPerovskitequantumdots, Perovskitenanocrystalsolutions, Cadmium-freequantumdots,Quantumdotsolutions,Greenemitter,QuantumdotLEDs(QDLEDs),PerovskiteLEDs(PeLEDs),Perovskitesolarcells(PvSCs)
Purity99%
AppearanceYellowLiquid
EmissionPeak515nm
EmissionLinewidth(FWHM)21nm
PhotoluminescenceQuantumYield60-70%

CsPbCl1.5Br1.5 PerovskiteQuantumDots

CASnumberNotavailable
ChemicalformulaCsPbCl1.5Br1.5
Molecularweight513.14 g/mol
FullnameCaesiumleadchloridebromidequantumdots
SynonymsCaesiumlead chloridebromidequantumdots
Classification/FamilyPerovskitequantumdots, Perovskitenanocrystalsolutions, Cadmium-freequantumdots,Quantumdotsolutions,Greenemitter,QuantumdotLEDs(QDLEDs),PerovskiteLEDs(PeLEDs),Perovskitesolarcells(PvSCs)
Purity99%
AppearanceClear Liquid
EmissionPeak450nm
EmissionLinewidth(FWHM)20nm
PhotoluminescenceQuantumYield30-40%

CsPbI3 PerovskiteQuantumDots

CASnumber18041-25-3
ChemicalformulaCsPbI3
Molecularweight720.82 g/mol
FullnameCaesiumleadtriiodide quantumdots
SynonymsCaesiumlead iodide quantumdots
Classification/FamilyPerovskitequantumdots, Perovskitenanocrystalsolutions, Cadmium-freequantumdots,Quantumdotsolutions,Greenemitter,QuantumdotLEDs(QDLEDs),PerovskiteLEDs(PeLEDs),Perovskitesolarcells(PvSCs)
Purity99%
AppearanceDarkRed Liquid
EmissionPeak688nm
EmissionLinewidth(FWHM)39nm
PhotoluminescenceQuantumYield60-70%

PerovskiteQuantumDotSpectralData

CsPbBr3 Perovskite Quantum Dots Absorption SpectraCsPbBr3PerovskiteQuantumDotsAbsorptionSpectra

CsPbBr3 Perovskite Quantum Dots Photoluminescence SpectraCsPbBr3PerovskiteQuantumDotsPhotoluminescenceSpectra

 

CsPbCl1.5Br1.5 Perovskite Quantum Dots Photoluminescence SpectraCsPbCl1.5Br1.5 PerovskiteQuantumDotsPhotoluminescenceSpectra

CsPbI3 Perovskite Quantum Dots Photoluminescence SpectraCsPbI3 PerovskiteQuantumDotsPhotoluminescenceSpectra

MSDS Documents

Toluene Dispersed CsPbBr3 Perovskite Quantum Dots MSDSCsPbBr3PerovskiteQuantumDotsinToluene

Octane Dispersed CsPbBr3 Perovskite Quantum Dots MSDSCsPbBr3PerovskiteQuantumDotsinOctane

PropertiesofPerovskiteQuantumDots

PerovskiteQuantumDot Structure

Halideperovskitenanocrystalshaveacubiccrystalstructure withthechemicalformula A+Pb2+X-3.Theycanbeclassedasanorganic-inorganichybrid,where A isanorganiccationsuchasmethylammonium(MA)orformamidinium(FA),orfullyinorganic(A=Cs),andwhere X isahalogen(Cl,BrorI).Duetothelackofvolatileorganics,fully-inorganic nanocrystals tendtohavebetterstabilityandhigherPLQY(>90%)thanhybridorganic-inorganicmaterials[3].Mixedhalideperovskitescanalsobeproducedwhere X isamixtureofCl/BrorBr/I.

Forvisibleoptoelectronicapplications,thenanocrystalsaregenerallysynthesisedtohaveasizeof4-15nm(dependentonthehalogenatomandtherequiredopticalproperties).Theemissionwavelengthcanbetunedthroughtheentirevisiblespectrum(400-700nm [4])bychangingeitherthenanocrystalsizeorhalideratio(formixedhalidesystems).

Perovskite quantum dot structure
Figure1:Leadhalideperovskitequantumdotshaveacubicstructureandareoftensynthesisedwithorganicligands.

PerovskiteQuantumDotSynthesis

Thefirsthybridorganic-inorganicperovskitequantumdotcolloidalsynthesisofMAPbBr3 wasreportedbySchmidtetal.usingahotinjectionmethod(similartothatusedtosynthesisemetalchalcogenideQDs [4]).Amixtureofmethylaminebromideandleadbromidewasinjectedintoanoctadecenesolutioncontainingoleicacidandalongchainalkylammoniumbromide.ThePLQYoftheresultingQDswas~20%,andwasstableforseveralmonthsduetothestabilisingandcappingeffectsoftheammoniumbromideandoleicacid.Byoptimisationofthereactantmolarratios,thePLQYwasincreasedtoover80% [5],andlaterto~100%bychangingthecappingligand [6].

 

 

 Perovskite quantum dot ink synthesis
Figure2:ThesynthesisofperovskitequantumdotsinvolvesinjectingCs-oleateintoaleadprecursor.

 

Hotinjectionwasagainusedforthecolloidalsynthesisofinorganicmetal-halideperovskitequantumdots,firstreportedbyProtesescuetal [1].Thatrecipedevelopedwasasfollows:

  1. ThecaesiumprecursorCs-oleateisfirstpreparedbymixingcaesiumcarbonate(Cs2CO3)andoleicacid(OA)inoctadecene(ODE),andheatingundernitrogenuntiltheCs2CO3 hasreactedwiththeOA.Thissolutionmustbekeptabove100°CtopreventprecipitationoftheCs-oleate.
  2. Aleadhalideprecursorispreparedbymixingaleadhalide(PbCl2,PbI2,PbBr2 oramixtureofthese)inODEat120°Cundernitrogen,alongwithOAandoleylamine(OLA)thatactasstabilisingagents.Oncetheleadhalidehasdissolved,thetemperatureisincreasedtobetween140-200°C(dependingontherequirednanocrystalsize).
  3. Thecaesiumprecursoristheninjected.After5seconds,themixtureisrapidlycooledinanicebath,withthequantumdotsbeingisolatedthroughcentrifuging.

TheresultingnanocrystalshavesurfaceligandscomprisedofOAandOLA [3].SuchnanocrystalswerefoundtohavePLQYsupto~90%,withthesmallestcrystals(4nmdiameter)havinganemissionlinewidth(fullwidthhalfmaximum)of12nmatanemissionwavelengthof410nm,withthelargestquantumdots(15nmdiameter)havingalinewidthof42nmat700nm.

 

Video by Ossila

Duringtheproductionprocessthereactionmixtureisquenchedbycoolinginanice-waterbath.

Mixed-halidePerovskiteQuantumDots

Anadvantagethatperovskitequantumdotshaveovertheirmetalchalcogenidecounterpartsisthesimplicitybywhichtheiremissionpropertiescanbemodified.Inadditiontotuningtheemissionwavelengthduringsynthesisthroughreactiontemperature(andultimately,nanocrystalsize),itcanalsobechangedpost-synthesisthroughananion-exchangereaction [7,8].Bymixingadonorhalidesourcesuchasoctadecylammonium(ODA-Y),chloro-oleyalmine-oleylammoniumchloride(OLAM-Y)ortetrabutylammonium(TBA-Y)halide(whereYisCl,BrorI)withasolutionofCsPbX3 nanocrystals,thechemicalcompositionofthenanocrystalscanbetunedcontinuouslyovertherangeCsPb(X1-Z:YZ),where0≤Z≤1.

 

Anion exchange in perovskite quantum dots
Apossiblemechanismforanionexchangeinperovskitequantumdots.

 

Anionexchangeisfollowedbylatticereconfiguration,givingamixedhalidestructure.Thisresultsinasingleemissionpeakatanenergysomewhereinbetweenthoseoftheconstituentnanocrystals,therebyretainingthenarrowlinewidthneededforcolorpurity.HoweverithasbeenfoundthatdirectconversionbetweenCsPbI3 andCsPbCl3 isnotpossiblebecauseofthelargemismatchinthesizeofthehalideions.

Ithasalsobeendemonstratedthatthisanionexchangeprocesscanbeeasilyaccomplishedbysimplymixingdifferentstocksolutionsofthenanocrystalconstituentsatdifferentvolumeratios(e.g.CsPbBr3 andCsPbI3 toobtainCsPb(Br1-Z:IZ)3 [7,9]).BothmethodsallowthenanocrystalemissiontobetunedovertheentirevisiblerangewhileretainingahighPLQYandcolorpurity.Theanionexchangeprocesscanhoweverbesuppressedbyaddingpolyhedraloligomericsilsesquioxane(POSS)tothesolution.Thiscreatesaprotectivecagearoundthenanocrystals,andallowsmixingofdifferenthalidecompositionswhileretainingthephotoluminescent propertiesoftheconstituentnanocrystals.Italsohastheaddedeffectofprotectingthenanocrystalsfromwater [10].

 

 Perovskite quantum dot ink
Figure3:ACsPbBrperovskitequantumdotinkundernormalIllumination(left)andultravioletillumination(right).

ApplicationsofPerovskiteQuantumDots

Perovskitequantumdotshavehugepotentialforarangeofapplicationsinelectronics,optoelectronicsandnanotechnology.Currently,thefieldisnotwellresearched,butinitialresultsareextremelypromising.Detailsonaselectionoftheapplicationsthathavebeeninvestigatedaregivenbelow.

QuantumDotSolarCells

Currently,reportsofperovskitequantumdotsolarcellsarestilllimited,especiallywhencomparedtobulkand2-dimensionalperovskites.Thisislikelyduetothelimitedtimethatsuchmaterialshavebeenavailable.However,recentresults suggestthatperovskitequantumdotscouldplayarolefuturephotovoltaicdevices.

Thefirstuseofperovskitequantumdotsinsolarcellswasin2011byImetal.,whereMaPbI3 nanocrystalsactedasalight-sensitiserinastructureresemblingadye-sensitisedsolarcell [16],withapowerconversionefficiencyof6.5%reported.Thisresultpredatedthesynthesisofcolloidalperovskitequantumdots,andthenanocrystalswereinsteadformedthroughsurfaceinteractionswhenamixtureofmethylammoniumiodideandleadiodidewasspincastontoaTiO2 surface.

Atroomtemperature,bulkCsPbI3 formsanorthorhombiccrystallatticewithalargebandgapof~2.8eV.Thecubicphaseisfarmoresuitableforphotovoltaicapplicationsasaresultofanarrowerbandgap(1.73eV).However,thisphaseonlyformsinbulkCsPbI3 attemperaturesabove300°C.Duetotheelevatedtemperatureandtheeffectofreducedsurfacearea,allCsPbX3 nanocrystalscrystalliseintothecubicphaseduringsynthesis.IncontrastCsPbCl3 andCsPbBr3 quantumdotsarephase-stableinthecubicpolymorphoverlongperiods,howeverCsPbI3 willconvertbacktoanorthorhombicconfigurationoverafewdaysinambientconditions.

Swarnkaretal.showedthattreatingspincastCsPbI3 quantumdotfilmswithmethylacetatestabilisesthecubicstructure [17].Thiswasachievedby changingthesurfaceenergy viatheremovalofunreactedprecursors-withoutcausingtheaggregationofthedots.Theresultingfilmwasstableformonthsunderambientconditions,andhadexcellentoptoelectronicproperties.Indeed,whenfabricatedintosolarcells,suchfilmsachievedaPCEofover10%andhadalargeopen-circuitvoltageof1.23V.FurThermore,LEDsincorporatingstabilisedCsPbI3 nanocrystalsastheactivelayerdisplayedalowturn-onvoltageof<2V.

Itwaslaterdemonstratedthatcoatingthenanocrystalsin A+X- (where A isformamidinium,methylammoniumorCs,and X isIorBr)furtherimprovescharge-carriermobilityofthenanocrystalfilms.ThisallowedsolarcellshavingaPCEof13.4%tobefabricated–thehighestefficiencyphotovoltaicsbasedonquantumdotsofanykind [18].Thisresultispromisingforthedevelopmentofperovskitetandemsolarcells;hereabulkperovskitefilmperformstheroleofthelowbandgapabsorber,withtheperovskitequantumdotlayeractingasacomplementarywidebandgapabsorber [19].

Light-EmittingDiodes(LEDs)

Metalchalcogenidequantumdotsalreadyplayaroleinconsumerdisplayproducts-sotheincreasedPLQY,easeofsynthesis,excellentcolourpurity,andwidecolourtunabilityofperovskitequantumdotssuggestthattheyshouldbewell-suitedtosuchapplications.However,chargeinjectionandtransportinnanocrystalfilmsmustbeoptimisedinordertoachievehigh-efficiencydevices.

FirstdevicesbySongetal.usedanITO/PEDOT:PSS/PVK/CsPbX3/TPBi/LiF/Alstructuretodemonstrateblue,green,andorangeLEDs [11].Whiletheemissionlinewidthswerenarrow,thebrightnessoftheLEDswasmodest(<1000cdm-2),andtheexternalquantumefficiencies(EQE)werelimitedto~0.1%.

Lietal.showedtheimportanceofnanocrystalsurfacechemistry;heretheEQEofCsPbBr3 nanocrystalLEDswasincreasedby50x(0.12%to6.27%)throughtheoptimisationofdevicecharge-transportlayersandsurfaceliganddensitycontrol(achievedthroughtheuseofawashingprocedureusinghexaneandethylacetate [3]).Whileligandsareneededtopassivatethequantumdotsurfaceandpreventaggregation(leadingtohighPLQYandgreaterstability),anexcessivedensityofsurfaceligandscaninhibitelectricalinjectionandtransport.Bytuningtheliganddensity,abrightnessof>15,000cdm-2 wasobtainedthatwasaccompaniedbyhighcolourpurity(20nmemissionlinewidthusing~8nmnanocrystals).

Oneproposalthatbypassestheelectricalpropertiesofnanocrystalfilmsistousethemasdown-convertersforinorganicblueorUVLEDs.Pathaketal.dissolvedhybridorganic-inorganicperovskitequantumdotsofvariousmixedhalidecompositions(emittinggreenorredluminescence)intoapolystyrenepolymersolutionwhichwasthenspincastintoathinfilm[12].Thepolystyrenepolymeractedasaninsulatingmatrixthatpreventedanionexchange,therebypreservingtheindividualemissionpeaksoftheconstituentnanocrystalsandallowingthegenerationofwhitelightwhenilluminatedwithacommercialblueLED.

Lasers

Amplifiedspontaneousemission(ASE)hasbeenobservedindropcastfilmsofCsPbBr3,andmixedCsPb(Br/I)3 andCsPb(Cl/Br)3 nanocrystals.Pumpthresholdscanbeaslowas5µJcm-2 [13];avaluethatcomparesveryfavourablywithothercolloidalQDsystems(e.g.anorderofmagnitudelowerthanspectrallysimilarCdSeQDs).TheASEemissionintensityis extremelystableinair,droppingbyonly10%afterseveralhoursofirradiationand~107 shotsinambientconditions.ThisperformancealsocomparesextremelywelltochalcogenideQDs [14]. Thestimulatedemissionhasbeenidentifiedasresultingfromtherecombinationofbiexcitons(whicharemorestableatroomtemperaturethanexcitons),withred-shiftedemissionleadingtoreducedself-absorption(andhencelowlasingthresholds).TheASEwavelength canalsobetunedthroughouttheentirevisiblespectrumviamixingthehalidecomposition.

Lasingwasobservedinawhisperinggallerymodeconfiguration.ItwaslatershownthatstimulatedemissioncouldbeobservedinCsPbBr3 nanocrystalfilmsfollowingtwo-photonabsorption [15].Here,itwasfoundthatthetwo-photonabsorptioncross-sectionwas2ordersofmagnitudelargerthanthatofsimilarmetalchalcogenidequantumdots,leadingtoastimulatedemissionthresholdofgreen-emittingCsPbBr3 nanocrystalsof2.5mJcm-2.Thisisfarlowerthancore-shellmetalchalcogenidequantumdots.Thisnon-linearstimulatedemissioncouldalsobetunedacrossthevisiblewavelengthsbyvaryingthemixedhalidecomposition.GreenstimulatedemissionfromCsPbBr quantumdots(followingthree-photonabsorption)wasalsoobserved–afirstforanytypeofquantumdot.Forthisreason,perovskitequantumdotspresentanexcitingProspectforthedevelopmentofnext-generationlasers.

SinglePhotonSources

Singlephotonsourcesarerequiredfornewlight-basedquantuminformationsystems.Here,currenteffortsmainlyfocusontheuseofepitaxially-grownquantumdots,diamondcolourcentersandcolloidalnanocrystals.Ofthese,colloidalNCsarethemostpromisingforroom-temperaturevisibleoperation [20].

DiluteCsPbX3 (X=Br,IorBr/I)NCsolutionshavebeenspincasttocreatespatially-separatedindividualQDs [20,21].Imagingthe photoluminescence fromindividualNCsshowedtheblinkingbehaviour thatischaracteristicofsingleemitters.Photoncoincidencecountingrevealedlowg(2) valuesof~6%,demonstratingtherealisationofanefficient,anti-bunchedsinglephotonsourceatroomtemperature–allofwhicharedesirablecharacteristicsforemergentquantumtechnologies.

IncomparisonwithmetalchalcogenideQDs,metalhalideperovskiteQDsdisplayshorterfluorescencelifetimesandhigherabsorptioncoefficientsandarethereforefasterandmoreefficientsourcesofsinglephotons.

Photodetectors

ThehighabsorptioncoefficientofperovskiteQDsoverawidespectralrangemaymakethemsuitablecandidatesforuseinlight-detectiondevices.Panetal.havereportedthefabricationofaphototransistorbasedonFAPbBr3 quantumdotsandgraphene [22].TheQDswhichactasthelightabsorber,aredepositedontoamonolayerofgraphenethattransportsphotoexcitedchargestothesource/drain.Suchphototransistorshaveabroadresponsespanningthevisiblespectrum,althoughtheyhavereducedresponsetophotonshavingenergiesbelowthesemiconductorbandgap(540nm).Here,aphotoresponsivityof1.15×105 AW-1 wasobservedat520nm;avaluethatisamongstthehighestofanygraphene-basedphotodetectors.

PricingTable

PerovskiteSolventConcentrationVolumeProductCodePrice
CsPbBr3Toluene10mg.ml-15mlM2124A1£200.00
CsPbBr3Toluene10mg.ml-110mlM2124A1£350.00
CsPbBr3Toluene10mg.ml-125mlM2124A1£700.00
CsPbBr3Octane10mg.ml-15mlM2124B1£200.00
CsPbBr3Octane10mg.ml-110mlM2124B1£350.00
CsPbBr3Octane10mg.ml-125mlM2124B1£700.00

Shippingisfreeforqualifyingordersplacedviaoursecureonlinecheckout.

Literature

References

  1. NanocrystalsofCesiumLeadHalidePerovskites(CsPbX3,X=Cl,Br,andI):NovelOptoelectronicMaterialsShowingBrightEmissionwithWideColorGamut,L.Protesescuetal.,NanoLett., 15 (6),3692–3696(2015)
  2. LeadHalidePerovskiteNanocrystalsintheResearchSpotlight:StabilityandDefectTolerance,Huangetal.,ACSEnergyLett.,2 (9),2071–2083(2017)
  3. 50‐FoldEQEImprovementupto6.27%ofSolution‐ProcessedAll‐InorganicPerovskiteCsPbBr3 QLEDsviaSurfaceLigandDensityControl,Lietal.,Adv.Mater.,29(5),1603885(2017)
  4. NontemplateSynthesisofCH3NH3PbBr3 PerovskiteNanoparticles,L.Schmidtetal.,Am.Chem.Soc.,136(3),850–853(2014)
  5. MaximizingtheemissivepropertiesofCH3NH3PbBr3 perovskitenanoparticles,S.Gonzalex-Carreroetal.,J.Mater.Chem.A,3,9187-9193(2015)
  6. TheLuminescenceofCH3NH3PbBr3 PerovskiteNanoparticlesCreststheSummitandTheirPhotostabilityunderWetConditionsisEnhanced,Gonzalex-Carreroetal.,Small,12(38),5245-5250(2016)
  7. FastAnion-ExchangeinHighlyLuminescentNanocrystalsofCesiumLeadHalidePerovskites(CsPbX3,X=Cl,Br,I),N.Nedelcuetal.,NanoLett., 15 (8),5635–5640(2015)
  8. TuningtheOpticalPropertiesofCesiumLeadHalidePerovskiteNanocrystalsbyAnionExchangeReactions,Akkermanetal.,J.Am.Chem.Soc., 137 (32),10276–10281(2015)
  9. Room-TemperatureConstructionofMixed-HalidePerovskiteQuantumDotswithHighPhotoluminescenceQuantumYield,C.Bietal.,J.Phys.Chem.C,122(9),5151–5160(2018)
  10. WaterresistantCsPbX3 nanocrystalscoatedwithpolyhedraloligomericsilsesquioxaneandtheiruseassolidstateluminophoresinall-perovskitewhitelight-emittingdevices,H.Huangetal.,ChemSci.,7(9),5699–5703(2016)
  11. Quantumdotlight-emittingdiodesbasedoninorganicperovskitecesiumleadhalides(CsPbX3),J.Songetal.,Adv.Mater.,27,7162-7167(2015)
  12. PerovskiteCrystalsforTunableWhiteLightEmission,S.Pathaketal.,Chem.Mater.,27(23),8066–8075(2015)
  13. Low-thresholdamplifiedspontaneousemissionandlasingfromcolloidalnanocrystalsofcaesiumleadhalideperovskites,S.Yakuninetal.,Nat.Comm.,6,8056(2015)
  14. All‐InorganicColloidalPerovskiteQuantumDots:ANewClassofLasingMaterialswithFavorableCharacteristics,Y.Wangetal.,Adv.Mater.,27(44),7101-7108(2015)
  15. NonlinearAbsorptionandLow-ThresholdMultiphotonPumpedStimulatedEmissionfromAll-InorganicPerovskiteNanocrystals,Wangetal.,NanoLett., 16 (1),448–453(2016)
  16. 6.5%efficientperovskitequantum-dot-sensitizedsolarcell,JH.Imetal.,Nanoscale,3,4088-4093(2011)
  17. Quantumdot–inducedphasestabilizationofα-CsPbI3perovskiteforhigh-efficiencyphotovoltaics,A.Swarnkaretal.,Science,354(6308),92-95(2016)
  18. EnhancedmobilityCsPbI3quantumdotarraysforrecord-efficiency,high-voltagephotovoltaiccells,E.Sanehiraetal.,ScienceAdvances27Oct2017:Vol.3,no.10,eaao4204
  19. PerovskiteQuantumDots:ANewAbsorberforPerovskite-PerovskiteTandemSolarCells:Preprint,J.Christiansetal.,NationalRenewableEnergyLaboratory.NREL/CP-5900-71593(2018)
  20. SuperiorOpticalPropertiesofPerovskiteNanocrystalsasSinglePhotonEmitters,F.Huetal.,ACSNano,9(12),12410–12416(2015)
  21. RoomTemperatureSingle-PhotonEmissionfromIndividualPerovskiteQuantumDots,YS.Parketal.,ACSNano, 9(10),10386–10393(2015)
  22. Photodetectors:High‐ResponsivityPhotodetectorsBasedonFormamidiniumLeadHalidePerovskiteQuantumDot–GrapheneHybrid,R.Panetal.,Particle,35(4),1700304(2018)


Tothebestofourknowledgethetechnicalinformationprovidedhereisaccurate.However,Ossilaassumenoliabilityfortheaccuracyofthisinformation.Thevaluesprovidedherearetypicalatthetimeofmanufactureandmayvaryovertimeandfrombatchtobatch.

About Ossila Founded in 2009 by organic electronics research scientists, Ossila aims to provide the components, equipment, and materials to enable intelligent and efficient scientific research and discovery. Over a decade on, we're proud to supply our products to over 1000 different institutions in over 80 countries globally. With decades of academic and industrial experience in developing organic and thin-film LEDs, photovoltaics, and FETs, we know how long it takes to establish a reliable and efficient device fabrication and testing process. As such, we have developed coherent packages of products and services - enabling researchers to jump-start their organic electronics development program. The Ossila Guarantee Free Worldwide Shipping Eligible orders ship free to anywhere in the world Fast Secure Dispatch Rapid dispatch on in-stock items via secure tracked courier services Quality Assured Backed up by our free two year warranty on all equipment Clear Upfront Pricing Clear pricing in over 30 currencies with no hidden costs Large Order Discounts Save 8% on orders over $10,300.00 and 10% on orders over $12,900.00 Expert Support Our in-house scientists and engineers are always ready to help Trusted Worldwide Great products and service. Have already recommended to many people. Dr. Gregory Welch, University of Calgary Wonderful company with reasonably priced products and so customer-friendly! Shahriar Anwar, Arizona State University The Ossila Team Prof. David Lidzey - Chairman As professor of physics at the University of Sheffield, Prof. David Lidzey heads the university’s Electronic and Photonic Molecular Materials research group (EPMM). During his career, David has worked in both academic and technical environments, with his main areas of research including hybrid organic-inorganic semiconductor materials and devices, organic photonic devices and structures and solution processed photovoltaic devices. Throughout his academic career, he has authored over 220 peer-reviewed papers. Dr. James Kingsley - Managing Director James is a co-founder and managing director of Ossila. With a PhD in quantum mechanics/nanotech and over 12 years’ experience in organic electronics, his work on the fabrication throughput of organic photovoltaics led to the formation of Ossila and the establishment of a strong guiding ethos: to speed up the pace of scientific discovery. James is particularly interested in developing innovative equipment and improving the accessibility of new materials for solution-processable photovoltaics and hybrid organic-inorganic devices. Dr. Alastair Buckley - Technical Director Alastair is a lecturer of Physics at the University of Sheffield, specialising in organic electronics and photonics. He is also a member of the EPMM research group with a focus on understanding and applying the intrinsic advantages of functional organic materials to a range of optoelectronic devices. Alastair’s experience has not been gained solely in academia; he previously led the R&D team at MicroEmissive Displays and therefore has extensive technical experience in OLED displays. He is also the editor and contributor of "Organic Light-Emitting Diodes" by Elsevier. Our Research Scientists Our research scientists and product developers have significant experience in the synthesis and processing of materials and the fabrication and testing of devices. The vision behind Ossila is to share this experience with academic and industrial researchers alike, and to make their research more efficient. By providing products and services that take the hard work out of the device fabrication process, and the equipment to enable accurate, rapid testing, we can free scientists to focus on what they do best - science. Customer Care Team The customer care team is responsible for the customer journey at Ossila. From creating and providing quotes, through to procurement and inventory management, the customer care team is devoted to providing first class customer service. The general day to day responsibilities of a customer care team member involves processing customers orders and price queries, answering customer enquiries, arranging the shipment of parcels and notifying customers of updates on their orders. Collaborations and Partnerships Please contact the customer care team for all enquires, including technical questions about Ossila products or for advice on fabrication and measurement processes. Location and Facilities Ossila is based at the Solpro Business Park in Attercliffe, Sheffield. We operate a purpose-built synthetic chemistry and device testing laboratory on site, where all of our high-purity, batch-specific polymers and other formulations are made. This is complemented by a dedicated suite of thin-film and organic electronics testing and analysis tools within the device fabrication cluster housed in a class 1000 cleanroom in the EPSRC National Epitaxy Facility in Sheffield. All our electronic equipment is manufactured on-site.
  • 资质认证

    获得国家资质,权威认证!

  • 全国联保

    全国联保,官方无忧售后

  • 正规发票

    正规发票,放心购买

  • 签订合同

    签订合同,保障您的权益

/**/