Ossila/Perovskite Quantum Dots | Buy Low Price Quantum Dots/Chloride\/Bromide (450 nm) \/ CsPbCl1.5Br1.5 in toluene (10mg\/ml) \/ 5 ml/Bromide (450 nm) \/ CsPbCl1.5Br1.5 in toluene (10mg\/ml) \/ 10 ml
CaesiumLeadperovskiteQuantumdotsofchloride/bromide(450nm,blue),bromide(515nm,green)andiodide(685nm,red)arenowavailable.
Perovskitequantumdotsaresemiconductingnanocrystals.Comparedtometalchalcogenidequantumdots,perovskitequantumdotsaremoretoleranttodefectsandhaveexcellentphotoluminescencequantumyieldsandhighcolourpurity.ThesepropertiesarehighlydesirableforelectronicandoptoelectronicapplicationsandhenceperovskitequantumdotshavehugepotentialforrealworldapplicationsincludingLEDdisplaysandquantumdotsolarcells.
ossilasupplieshighquality,lowpriceperovskitequantumdotsfrom£200.00.
Whatisaquantumdot?
Aquantumdot(QD),orsemiconductingnanocrystal(NC),isasinglecrystalofasemiconductingmaterialmeasuringonlyafewnanometresindiameter.Whenexcited,thesmallsizeofthecrystalactsa‘quantumbox’andconfineselectronsandholesinanvolumesmallerthanthecorrespondingexcitonBohrrADIus.Thesmallerthedot,thegreatertheconfinementenergyandthehighertheenergyofphotonsthatareabsorbedoremitted.
Themostwell-studiedquantumdotsaremetalchalcogenidequantumdotsbasedonsemiconductorssuchascadmiumselenide,indiumphosphideorLead(II)sulfide.ThebandgapofsuchquantumdotscanbetunedthroughouttheentirevisIBLespectrumsimplybychangingtheirsizeduringchemicalsynthesis.
Forthehighestphotoluminescencequantumyields(PLQYs),acore/shellstructureisusuallyrequired.Inthisarrangement,asecondsemiconductorisusedtoencapsulatethenanocrystal(e.g.CdSe/CdS,InP/ZnS).Thismaterialpassivatessurfacedefectsoftheemissivecorewhichwouldotherwiseactasnon-radiativerecombinationsitesforexcitons.
DuetotheirhighPLQY,relativeeaseoffabricationandwideemission-colourtunABIlity,quantumdotshavingthistypeofstructureareespeciallysuitableforapplicationindisplayandimagingtechnologies-andarealreadyappearingincommercialproductssuchastelevisions.
Whatisaperovskitequantumdot?
Anewclassofquantumdotisemergingbasedonperovskites.ThesehavealreadybeenshowntohavepropertiesrivallingorexceedingthoseofmetalchalcogenideQDs.
Duetotheiroutstandingphotovoltaicperformance,perovskitesarereceivingsignificantattentionfromtheresearchcommunity.Recently,hasbeenshownthatreducingthedimensionsofaperovskitecrystaldowntoafewnanometresresultsinthecreationofquantumdotswithveryhighphotoluminescencequantumyieldsandexcellentcolourpurity(i.e.narrowemissionlinewidthsof~10nmforblueemittersand40nmforredemitters[1]).
Thesequantumdotsarehighlytoleranttodefects,astheyrequirenopassivationofthesurfacetoretaintheirhighPLQY.Althoughdefectandtrapsitesarepresent,theirenergiesarepositionedoutsidethebandgapandareeitherlocatedwithintheconductionorvalencebands[2].SuchperovskitenanocrystalsaresimpletosynthesiseinacolloidalsUSPensionandareeasilyintegratedintooptoelectronicdevicesusingreadilyavailableprocessingtechniques,makingthemastrongcontenderforfuturetechnologies.
Size,Properties,andStructure
- 99%puritywithPhotoluminescenceQuantumYieldof60–70%
- EmissionPeakat515nmandEmissionLinewidth(FWHM)of21nm
- Cubiccrystalstructurewithtypicalsize4-15nm
Formoreinformation,pleaseseethepropertiestab.
PerovskiteQuantumDotApplications
Perovskitequantumdotsarecurrentlylesswellresearchedthanothertypesofquantumdot.However,theyhaveshowngreat potentialforarangeofdifferentapplicationsinoptoelectronicsandnanotechnology.Forexample, perovskitequantumdotshavebeenusedtocreatesolarcellshavingpowerconversionefficienciesthatexceedthatofcomparabledevicesbasedonmoreconventionalsemiconductornanocrystalmaterials.
Potentialapplicationsforperovskitequantumdotsinclude:
- LightEmittingDiodes
- SolarCells
- SinglePhotonSources
- X-RayDetectors
- Lasers
- Photodetectors
- QuantumComputing
- Cellimaging
- Cancermapping
Formoreinformation,pleaseseetheapplicationstab.
TechnicalData
CsPbBr3PerovskiteQuantumDots
CASnumber | 15243-48-8 |
Chemicalformula | CsPbBr3 |
Molecularweight | 579.82 g/mol |
Fullname | Caesiumleadtribromidequantumdots |
Synonyms | Caesiumleadbromidequantumdots |
Classification/Family | Perovskitequantumdots, Perovskitenanocrystalsolutions, Cadmium-freequantumdots,Quantumdotsolutions,Greenemitter,QuantumdotLEDs(QDLEDs),PerovskiteLEDs(PeLEDs),Perovskitesolarcells(PvSCs) |
Purity | 99% |
Appearance | YellowLiquid |
EmissionPeak | 515nm |
EmissionLinewidth(FWHM) | 21nm |
PhotoluminescenceQuantumYield | 60-70% |
CsPbCl1.5Br1.5 PerovskiteQuantumDots
CASnumber | Notavailable |
Chemicalformula | CsPbCl1.5Br1.5 |
Molecularweight | 513.14 g/mol |
Fullname | Caesiumleadchloridebromidequantumdots |
Synonyms | Caesiumlead chloridebromidequantumdots |
Classification/Family | Perovskitequantumdots, Perovskitenanocrystalsolutions, Cadmium-freequantumdots,Quantumdotsolutions,Greenemitter,QuantumdotLEDs(QDLEDs),PerovskiteLEDs(PeLEDs),Perovskitesolarcells(PvSCs) |
Purity | 99% |
Appearance | Clear Liquid |
EmissionPeak | 450nm |
EmissionLinewidth(FWHM) | 20nm |
PhotoluminescenceQuantumYield | 30-40% |
CsPbI3 PerovskiteQuantumDots
CASnumber | 18041-25-3 |
Chemicalformula | CsPbI3 |
Molecularweight | 720.82 g/mol |
Fullname | Caesiumleadtriiodide quantumdots |
Synonyms | Caesiumlead iodide quantumdots |
Classification/Family | Perovskitequantumdots, Perovskitenanocrystalsolutions, Cadmium-freequantumdots,Quantumdotsolutions,Greenemitter,QuantumdotLEDs(QDLEDs),PerovskiteLEDs(PeLEDs),Perovskitesolarcells(PvSCs) |
Purity | 99% |
Appearance | DarkRed Liquid |
EmissionPeak | 688nm |
EmissionLinewidth(FWHM) | 39nm |
PhotoluminescenceQuantumYield | 60-70% |
PerovskiteQuantumDotSpectralData
CsPbBr3PerovskiteQuantumDotsAbsorptionSpectra
CsPbBr3PerovskiteQuantumDotsPhotoluminescenceSpectra
CsPbCl1.5Br1.5 PerovskiteQuantumDotsPhotoluminescenceSpectra
CsPbI3 PerovskiteQuantumDotsPhotoluminescenceSpectra
MSDS Documents
CsPbBr3PerovskiteQuantumDotsinToluene
CsPbBr3PerovskiteQuantumDotsinOctane
PropertiesofPerovskiteQuantumDots
PerovskiteQuantumDot Structure
Halideperovskitenanocrystalshaveacubiccrystalstructure withthechemicalformula A+Pb2+X-3.Theycanbeclassedasanorganic-inorganichybrid,where A isanorganiccationsuchasmethylammonium(MA)orformamidinium(FA),orfullyinorganic(A=Cs),andwhere X isahalogen(Cl,BrorI).Duetothelackofvolatileorganics,fully-inorganic nanocrystals tendtohavebetterstabilityandhigherPLQY(>90%)thanhybridorganic-inorganicmaterials[3].Mixedhalideperovskitescanalsobeproducedwhere X isamixtureofCl/BrorBr/I.
Forvisibleoptoelectronicapplications,thenanocrystalsaregenerallysynthesisedtohaveasizeof4-15nm(dependentonthehalogenatomandtherequiredopticalproperties).Theemissionwavelengthcanbetunedthroughtheentirevisiblespectrum(400-700nm [4])bychangingeitherthenanocrystalsizeorhalideratio(formixedhalidesystems).
PerovskiteQuantumDotSynthesis
Thefirsthybridorganic-inorganicperovskitequantumdotcolloidalsynthesisofMAPbBr3 wasreportedbySchmidtetal.usingahotinjectionmethod(similartothatusedtosynthesisemetalchalcogenideQDs [4]).Amixtureofmethylaminebromideandleadbromidewasinjectedintoanoctadecenesolutioncontainingoleicacidandalongchainalkylammoniumbromide.ThePLQYoftheresultingQDswas~20%,andwasstableforseveralmonthsduetothestabilisingandcappingeffectsoftheammoniumbromideandoleicacid.Byoptimisationofthereactantmolarratios,thePLQYwasincreasedtoover80% [5],andlaterto~100%bychangingthecappingligand [6].
Hotinjectionwasagainusedforthecolloidalsynthesisofinorganicmetal-halideperovskitequantumdots,firstreportedbyProtesescuetal [1].Thatrecipedevelopedwasasfollows:
- ThecaesiumprecursorCs-oleateisfirstpreparedbymixingcaesiumcarbonate(Cs2CO3)andoleicacid(OA)inoctadecene(ODE),andheatingundernitrogenuntiltheCs2CO3 hasreactedwiththeOA.Thissolutionmustbekeptabove100°CtopreventprecipitationoftheCs-oleate.
- Aleadhalideprecursorispreparedbymixingaleadhalide(PbCl2,PbI2,PbBr2 oramixtureofthese)inODEat120°Cundernitrogen,alongwithOAandoleylamine(OLA)thatactasstabilisingagents.Oncetheleadhalidehasdissolved,thetemperatureisincreasedtobetween140-200°C(dependingontherequirednanocrystalsize).
- Thecaesiumprecursoristheninjected.After5seconds,themixtureisrapidlycooledinanicebath,withthequantumdotsbeingisolatedthroughcentrifuging.
TheresultingnanocrystalshavesurfaceligandscomprisedofOAandOLA [3].SuchnanocrystalswerefoundtohavePLQYsupto~90%,withthesmallestcrystals(4nmdiameter)havinganemissionlinewidth(fullwidthhalfmaximum)of12nmatanemissionwavelengthof410nm,withthelargestquantumdots(15nmdiameter)havingalinewidthof42nmat700nm.
Mixed-halidePerovskiteQuantumDots
Anadvantagethatperovskitequantumdotshaveovertheirmetalchalcogenidecounterpartsisthesimplicitybywhichtheiremissionpropertiescanbemodified.Inadditiontotuningtheemissionwavelengthduringsynthesisthroughreactiontemperature(andultimately,nanocrystalsize),itcanalsobechangedpost-synthesisthroughananion-exchangereaction [7,8].Bymixingadonorhalidesourcesuchasoctadecylammonium(ODA-Y),chloro-oleyalmine-oleylammoniumchloride(OLAM-Y)ortetrabutylammonium(TBA-Y)halide(whereYisCl,BrorI)withasolutionofCsPbX3 nanocrystals,thechemicalcompositionofthenanocrystalscanbetunedcontinuouslyovertherangeCsPb(X1-Z:YZ),where0≤Z≤1.
Anionexchangeisfollowedbylatticereconfiguration,givingamixedhalidestructure.Thisresultsinasingleemissionpeakatanenergysomewhereinbetweenthoseoftheconstituentnanocrystals,therebyretainingthenarrowlinewidthneededforcolorpurity.HoweverithasbeenfoundthatdirectconversionbetweenCsPbI3 andCsPbCl3 isnotpossiblebecauseofthelargemismatchinthesizeofthehalideions.
Ithasalsobeendemonstratedthatthisanionexchangeprocesscanbeeasilyaccomplishedbysimplymixingdifferentstocksolutionsofthenanocrystalconstituentsatdifferentvolumeratios(e.g.CsPbBr3 andCsPbI3 toobtainCsPb(Br1-Z:IZ)3 [7,9]).BothmethodsallowthenanocrystalemissiontobetunedovertheentirevisiblerangewhileretainingahighPLQYandcolorpurity.Theanionexchangeprocesscanhoweverbesuppressedbyaddingpolyhedraloligomericsilsesquioxane(POSS)tothesolution.Thiscreatesaprotectivecagearoundthenanocrystals,andallowsmixingofdifferenthalidecompositionswhileretainingthephotoluminescent propertiesoftheconstituentnanocrystals.Italsohastheaddedeffectofprotectingthenanocrystalsfromwater [10].
ApplicationsofPerovskiteQuantumDots
Perovskitequantumdotshavehugepotentialforarangeofapplicationsinelectronics,optoelectronicsandnanotechnology.Currently,thefieldisnotwellresearched,butinitialresultsareextremelypromising.Detailsonaselectionoftheapplicationsthathavebeeninvestigatedaregivenbelow.
QuantumDotSolarCells
Currently,reportsofperovskitequantumdotsolarcellsarestilllimited,especiallywhencomparedtobulkand2-dimensionalperovskites.Thisislikelyduetothelimitedtimethatsuchmaterialshavebeenavailable.However,recentresults suggestthatperovskitequantumdotscouldplayarolefuturephotovoltaicdevices.
Thefirstuseofperovskitequantumdotsinsolarcellswasin2011byImetal.,whereMaPbI3 nanocrystalsactedasalight-sensitiserinastructureresemblingadye-sensitisedsolarcell [16],withapowerconversionefficiencyof6.5%reported.Thisresultpredatedthesynthesisofcolloidalperovskitequantumdots,andthenanocrystalswereinsteadformedthroughsurfaceinteractionswhenamixtureofmethylammoniumiodideandleadiodidewasspincastontoaTiO2 surface.
Atroomtemperature,bulkCsPbI3 formsanorthorhombiccrystallatticewithalargebandgapof~2.8eV.Thecubicphaseisfarmoresuitableforphotovoltaicapplicationsasaresultofanarrowerbandgap(1.73eV).However,thisphaseonlyformsinbulkCsPbI3 attemperaturesabove300°C.Duetotheelevatedtemperatureandtheeffectofreducedsurfacearea,allCsPbX3 nanocrystalscrystalliseintothecubicphaseduringsynthesis.IncontrastCsPbCl3 andCsPbBr3 quantumdotsarephase-stableinthecubicpolymorphoverlongperiods,howeverCsPbI3 willconvertbacktoanorthorhombicconfigurationoverafewdaysinambientconditions.
Swarnkaretal.showedthattreatingspincastCsPbI3 quantumdotfilmswithmethylacetatestabilisesthecubicstructure [17].Thiswasachievedby changingthesurfaceenergy viatheremovalofunreactedprecursors-withoutcausingtheaggregationofthedots.Theresultingfilmwasstableformonthsunderambientconditions,andhadexcellentoptoelectronicproperties.Indeed,whenfabricatedintosolarcells,suchfilmsachievedaPCEofover10%andhadalargeopen-circuitvoltageof1.23V.FurThermore,LEDsincorporatingstabilisedCsPbI3 nanocrystalsastheactivelayerdisplayedalowturn-onvoltageof<2V.
Itwaslaterdemonstratedthatcoatingthenanocrystalsin A+X- (where A isformamidinium,methylammoniumorCs,and X isIorBr)furtherimprovescharge-carriermobilityofthenanocrystalfilms.ThisallowedsolarcellshavingaPCEof13.4%tobefabricated–thehighestefficiencyphotovoltaicsbasedonquantumdotsofanykind [18].Thisresultispromisingforthedevelopmentofperovskitetandemsolarcells;hereabulkperovskitefilmperformstheroleofthelowbandgapabsorber,withtheperovskitequantumdotlayeractingasacomplementarywidebandgapabsorber [19].
Light-EmittingDiodes(LEDs)
Metalchalcogenidequantumdotsalreadyplayaroleinconsumerdisplayproducts-sotheincreasedPLQY,easeofsynthesis,excellentcolourpurity,andwidecolourtunabilityofperovskitequantumdotssuggestthattheyshouldbewell-suitedtosuchapplications.However,chargeinjectionandtransportinnanocrystalfilmsmustbeoptimisedinordertoachievehigh-efficiencydevices.
FirstdevicesbySongetal.usedanITO/PEDOT:PSS/PVK/CsPbX3/TPBi/LiF/Alstructuretodemonstrateblue,green,andorangeLEDs [11].Whiletheemissionlinewidthswerenarrow,thebrightnessoftheLEDswasmodest(<1000cdm-2),andtheexternalquantumefficiencies(EQE)werelimitedto~0.1%.
Lietal.showedtheimportanceofnanocrystalsurfacechemistry;heretheEQEofCsPbBr3 nanocrystalLEDswasincreasedby50x(0.12%to6.27%)throughtheoptimisationofdevicecharge-transportlayersandsurfaceliganddensitycontrol(achievedthroughtheuseofawashingprocedureusinghexaneandethylacetate [3]).Whileligandsareneededtopassivatethequantumdotsurfaceandpreventaggregation(leadingtohighPLQYandgreaterstability),anexcessivedensityofsurfaceligandscaninhibitelectricalinjectionandtransport.Bytuningtheliganddensity,abrightnessof>15,000cdm-2 wasobtainedthatwasaccompaniedbyhighcolourpurity(20nmemissionlinewidthusing~8nmnanocrystals).
Oneproposalthatbypassestheelectricalpropertiesofnanocrystalfilmsistousethemasdown-convertersforinorganicblueorUVLEDs.Pathaketal.dissolvedhybridorganic-inorganicperovskitequantumdotsofvariousmixedhalidecompositions(emittinggreenorredluminescence)intoapolystyrenepolymersolutionwhichwasthenspincastintoathinfilm[12].Thepolystyrenepolymeractedasaninsulatingmatrixthatpreventedanionexchange,therebypreservingtheindividualemissionpeaksoftheconstituentnanocrystalsandallowingthegenerationofwhitelightwhenilluminatedwithacommercialblueLED.
Lasers
Amplifiedspontaneousemission(ASE)hasbeenobservedindropcastfilmsofCsPbBr3,andmixedCsPb(Br/I)3 andCsPb(Cl/Br)3 nanocrystals.Pumpthresholdscanbeaslowas5µJcm-2 [13];avaluethatcomparesveryfavourablywithothercolloidalQDsystems(e.g.anorderofmagnitudelowerthanspectrallysimilarCdSeQDs).TheASEemissionintensityis extremelystableinair,droppingbyonly10%afterseveralhoursofirradiationand~107 shotsinambientconditions.ThisperformancealsocomparesextremelywelltochalcogenideQDs [14]. Thestimulatedemissionhasbeenidentifiedasresultingfromtherecombinationofbiexcitons(whicharemorestableatroomtemperaturethanexcitons),withred-shiftedemissionleadingtoreducedself-absorption(andhencelowlasingthresholds).TheASEwavelength canalsobetunedthroughouttheentirevisiblespectrumviamixingthehalidecomposition.
Lasingwasobservedinawhisperinggallerymodeconfiguration.ItwaslatershownthatstimulatedemissioncouldbeobservedinCsPbBr3 nanocrystalfilmsfollowingtwo-photonabsorption [15].Here,itwasfoundthatthetwo-photonabsorptioncross-sectionwas2ordersofmagnitudelargerthanthatofsimilarmetalchalcogenidequantumdots,leadingtoastimulatedemissionthresholdofgreen-emittingCsPbBr3 nanocrystalsof2.5mJcm-2.Thisisfarlowerthancore-shellmetalchalcogenidequantumdots.Thisnon-linearstimulatedemissioncouldalsobetunedacrossthevisiblewavelengthsbyvaryingthemixedhalidecomposition.GreenstimulatedemissionfromCsPbBr3 quantumdots(followingthree-photonabsorption)wasalsoobserved–afirstforanytypeofquantumdot.Forthisreason,perovskitequantumdotspresentanexcitingProspectforthedevelopmentofnext-generationlasers.
SinglePhotonSources
Singlephotonsourcesarerequiredfornewlight-basedquantuminformationsystems.Here,currenteffortsmainlyfocusontheuseofepitaxially-grownquantumdots,diamondcolourcentersandcolloidalnanocrystals.Ofthese,colloidalNCsarethemostpromisingforroom-temperaturevisibleoperation [20].
DiluteCsPbX3 (X=Br,IorBr/I)NCsolutionshavebeenspincasttocreatespatially-separatedindividualQDs [20,21].Imagingthe photoluminescence fromindividualNCsshowedtheblinkingbehaviour thatischaracteristicofsingleemitters.Photoncoincidencecountingrevealedlowg(2) valuesof~6%,demonstratingtherealisationofanefficient,anti-bunchedsinglephotonsourceatroomtemperature–allofwhicharedesirablecharacteristicsforemergentquantumtechnologies.
IncomparisonwithmetalchalcogenideQDs,metalhalideperovskiteQDsdisplayshorterfluorescencelifetimesandhigherabsorptioncoefficientsandarethereforefasterandmoreefficientsourcesofsinglephotons.
Photodetectors
ThehighabsorptioncoefficientofperovskiteQDsoverawidespectralrangemaymakethemsuitablecandidatesforuseinlight-detectiondevices.Panetal.havereportedthefabricationofaphototransistorbasedonFAPbBr3 quantumdotsandgraphene [22].TheQDswhichactasthelightabsorber,aredepositedontoamonolayerofgraphenethattransportsphotoexcitedchargestothesource/drain.Suchphototransistorshaveabroadresponsespanningthevisiblespectrum,althoughtheyhavereducedresponsetophotonshavingenergiesbelowthesemiconductorbandgap(540nm).Here,aphotoresponsivityof1.15×105 AW-1 wasobservedat520nm;avaluethatisamongstthehighestofanygraphene-basedphotodetectors.
PricingTable
Perovskite | Solvent | Concentration | Volume | ProductCode | Price |
CsPbBr3 | Toluene | 10mg.ml-1 | 5ml | M2124A1 | £200.00 |
CsPbBr3 | Toluene | 10mg.ml-1 | 10ml | M2124A1 | £350.00 |
CsPbBr3 | Toluene | 10mg.ml-1 | 25ml | M2124A1 | £700.00 |
CsPbBr3 | Octane | 10mg.ml-1 | 5ml | M2124B1 | £200.00 |
CsPbBr3 | Octane | 10mg.ml-1 | 10ml | M2124B1 | £350.00 |
CsPbBr3 | Octane | 10mg.ml-1 | 25ml | M2124B1 | £700.00 |
Shippingisfreeforqualifyingordersplacedviaoursecureonlinecheckout.
Literature
References
- NanocrystalsofCesiumLeadHalidePerovskites(CsPbX3,X=Cl,Br,andI):NovelOptoelectronicMaterialsShowingBrightEmissionwithWideColorGamut,L.Protesescuetal.,NanoLett., 15 (6),3692–3696(2015)
- LeadHalidePerovskiteNanocrystalsintheResearchSpotlight:StabilityandDefectTolerance,Huangetal.,ACSEnergyLett.,2 (9),2071–2083(2017)
- 50‐FoldEQEImprovementupto6.27%ofSolution‐ProcessedAll‐InorganicPerovskiteCsPbBr3 QLEDsviaSurfaceLigandDensityControl,Lietal.,Adv.Mater.,29(5),1603885(2017)
- NontemplateSynthesisofCH3NH3PbBr3 PerovskiteNanoparticles,L.Schmidtetal.,Am.Chem.Soc.,136(3),850–853(2014)
- MaximizingtheemissivepropertiesofCH3NH3PbBr3 perovskitenanoparticles,S.Gonzalex-Carreroetal.,J.Mater.Chem.A,3,9187-9193(2015)
- TheLuminescenceofCH3NH3PbBr3 PerovskiteNanoparticlesCreststheSummitandTheirPhotostabilityunderWetConditionsisEnhanced,Gonzalex-Carreroetal.,Small,12(38),5245-5250(2016)
- FastAnion-ExchangeinHighlyLuminescentNanocrystalsofCesiumLeadHalidePerovskites(CsPbX3,X=Cl,Br,I),N.Nedelcuetal.,NanoLett., 15 (8),5635–5640(2015)
- TuningtheOpticalPropertiesofCesiumLeadHalidePerovskiteNanocrystalsbyAnionExchangeReactions,Akkermanetal.,J.Am.Chem.Soc., 137 (32),10276–10281(2015)
- Room-TemperatureConstructionofMixed-HalidePerovskiteQuantumDotswithHighPhotoluminescenceQuantumYield,C.Bietal.,J.Phys.Chem.C,122(9),5151–5160(2018)
- WaterresistantCsPbX3 nanocrystalscoatedwithpolyhedraloligomericsilsesquioxaneandtheiruseassolidstateluminophoresinall-perovskitewhitelight-emittingdevices,H.Huangetal.,ChemSci.,7(9),5699–5703(2016)
- Quantumdotlight-emittingdiodesbasedoninorganicperovskitecesiumleadhalides(CsPbX3),J.Songetal.,Adv.Mater.,27,7162-7167(2015)
- PerovskiteCrystalsforTunableWhiteLightEmission,S.Pathaketal.,Chem.Mater.,27(23),8066–8075(2015)
- Low-thresholdamplifiedspontaneousemissionandlasingfromcolloidalnanocrystalsofcaesiumleadhalideperovskites,S.Yakuninetal.,Nat.Comm.,6,8056(2015)
- All‐InorganicColloidalPerovskiteQuantumDots:ANewClassofLasingMaterialswithFavorableCharacteristics,Y.Wangetal.,Adv.Mater.,27(44),7101-7108(2015)
- NonlinearAbsorptionandLow-ThresholdMultiphotonPumpedStimulatedEmissionfromAll-InorganicPerovskiteNanocrystals,Wangetal.,NanoLett., 16 (1),448–453(2016)
- 6.5%efficientperovskitequantum-dot-sensitizedsolarcell,JH.Imetal.,Nanoscale,3,4088-4093(2011)
- Quantumdot–inducedphasestabilizationofα-CsPbI3perovskiteforhigh-efficiencyphotovoltaics,A.Swarnkaretal.,Science,354(6308),92-95(2016)
- EnhancedmobilityCsPbI3quantumdotarraysforrecord-efficiency,high-voltagephotovoltaiccells,E.Sanehiraetal.,ScienceAdvances27Oct2017:Vol.3,no.10,eaao4204
- PerovskiteQuantumDots:ANewAbsorberforPerovskite-PerovskiteTandemSolarCells:Preprint,J.Christiansetal.,NationalRenewableEnergyLaboratory.NREL/CP-5900-71593(2018)
- SuperiorOpticalPropertiesofPerovskiteNanocrystalsasSinglePhotonEmitters,F.Huetal.,ACSNano,9(12),12410–12416(2015)
- RoomTemperatureSingle-PhotonEmissionfromIndividualPerovskiteQuantumDots,YS.Parketal.,ACSNano, 9(10),10386–10393(2015)
- Photodetectors:High‐ResponsivityPhotodetectorsBasedonFormamidiniumLeadHalidePerovskiteQuantumDot–GrapheneHybrid,R.Panetal.,Particle,35(4),1700304(2018)
Tothebestofourknowledgethetechnicalinformationprovidedhereisaccurate.However,Ossilaassumenoliabilityfortheaccuracyofthisinformation.Thevaluesprovidedherearetypicalatthetimeofmanufactureandmayvaryovertimeandfrombatchtobatch.
About Ossila Founded in 2009 by organic electronics research scientists, Ossila aims to provide the components, equipment, and materials to enable intelligent and efficient scientific research and discovery. Over a decade on, we're proud to supply our products to over 1000 different institutions in over 80 countries globally. With decades of academic and industrial experience in developing organic and thin-film LEDs, photovoltaics, and FETs, we know how long it takes to establish a reliable and efficient device fabrication and testing process. As such, we have developed coherent packages of products and services - enabling researchers to jump-start their organic electronics development program. The Ossila Guarantee Free Worldwide Shipping Eligible orders ship free to anywhere in the world Fast Secure Dispatch Rapid dispatch on in-stock items via secure tracked courier services Quality Assured Backed up by our free two year warranty on all equipment Clear Upfront Pricing Clear pricing in over 30 currencies with no hidden costs Large Order Discounts Save 8% on orders over $10,300.00 and 10% on orders over $12,900.00 Expert Support Our in-house scientists and engineers are always ready to help Trusted Worldwide Great products and service. Have already recommended to many people. Dr. Gregory Welch, University of Calgary Wonderful company with reasonably priced products and so customer-friendly! Shahriar Anwar, Arizona State University The Ossila Team Prof. David Lidzey - Chairman As professor of physics at the University of Sheffield, Prof. David Lidzey heads the university’s Electronic and Photonic Molecular Materials research group (EPMM). During his career, David has worked in both academic and technical environments, with his main areas of research including hybrid organic-inorganic semiconductor materials and devices, organic photonic devices and structures and solution processed photovoltaic devices. Throughout his academic career, he has authored over 220 peer-reviewed papers. Dr. James Kingsley - Managing Director James is a co-founder and managing director of Ossila. With a PhD in quantum mechanics/nanotech and over 12 years’ experience in organic electronics, his work on the fabrication throughput of organic photovoltaics led to the formation of Ossila and the establishment of a strong guiding ethos: to speed up the pace of scientific discovery. James is particularly interested in developing innovative equipment and improving the accessibility of new materials for solution-processable photovoltaics and hybrid organic-inorganic devices. Dr. Alastair Buckley - Technical Director Alastair is a lecturer of Physics at the University of Sheffield, specialising in organic electronics and photonics. He is also a member of the EPMM research group with a focus on understanding and applying the intrinsic advantages of functional organic materials to a range of optoelectronic devices. Alastair’s experience has not been gained solely in academia; he previously led the R&D team at MicroEmissive Displays and therefore has extensive technical experience in OLED displays. He is also the editor and contributor of "Organic Light-Emitting Diodes" by Elsevier. Our Research Scientists Our research scientists and product developers have significant experience in the synthesis and processing of materials and the fabrication and testing of devices. The vision behind Ossila is to share this experience with academic and industrial researchers alike, and to make their research more efficient. By providing products and services that take the hard work out of the device fabrication process, and the equipment to enable accurate, rapid testing, we can free scientists to focus on what they do best - science. Customer Care Team The customer care team is responsible for the customer journey at Ossila. From creating and providing quotes, through to procurement and inventory management, the customer care team is devoted to providing first class customer service. The general day to day responsibilities of a customer care team member involves processing customers orders and price queries, answering customer enquiries, arranging the shipment of parcels and notifying customers of updates on their orders. Collaborations and Partnerships Please contact the customer care team for all enquires, including technical questions about Ossila products or for advice on fabrication and measurement processes. Location and Facilities Ossila is based at the Solpro Business Park in Attercliffe, Sheffield. We operate a purpose-built synthetic chemistry and device testing laboratory on site, where all of our high-purity, batch-specific polymers and other formulations are made. This is complemented by a dedicated suite of thin-film and organic electronics testing and analysis tools within the device fabrication cluster housed in a class 1000 cleanroom in the EPSRC National Epitaxy Facility in Sheffield. All our electronic equipment is manufactured on-site.-
资质认证
获得国家资质,权威认证!
-
全国联保
全国联保,官方无忧售后
-
正规发票
正规发票,放心购买
-
签订合同
签订合同,保障您的权益