Purity>98%.1,4-β-D-Mannan.Treatedwithsodiumborohydridetolowerreducingsugarlevels.TracesofarABInoseandxylose.
Roleof(1,3)(1,4)β-glucanincellwalls:Interactionwithcellulose.
Kiemle,S.N.,Zhang,X.,Esker,A.R.,Toriz,G.,Gatenholm,P.&Cosgrove,D.J.(2014).Biomacromolecules,15(5),1727-1736.
LinktoArticle
ReadAbstract
(1,3)(1,4)-β-D-Glucan(mixed-linkageglucanorMLG),acharacteristichemicelluloseinprimarycellwallsofgrasses,wasinvestigatedtodeterminebothitsroleincellwallsanditsinteractionwithcelluloseandothercellwallpolysaccharides
invitro.BindingisothermsshowedthatMLGadsorptionontomicrocrystallinecelluloseisslow,irrevers
IBLe,andtemperature-dependent.MeasurementsusingquartzcrystalmicrobalancewithdissipationmonitoringshowedthatMLGadsorbedirreversiblyontoamorphousregeneratedcellulose,formingathickhydrogel.Oligosaccharideprofilingusing
endo-(1,3)(1,4)-β-glucanaseindicatedthattherewasnodifferenceinthefrequencyanddistributionof(1,3)and(1,4)linksinboundandunboundMLG.ThebindingofMLGtocellulosewasreducedifthecellulosesampleswerefirsttreatedwithcertaincellwallpolysaccharides,suchasxyloglucanandglucuronoarabinoxylan.ThetetheringfunctionofMLGincellwallswastestedbyapplying
endo-(1,3)(1,4)-β-glucanasetowallsamplesinaconstantforceextensometer.Cellwallextensionwasnotinduced,whichindicatesthatenzyme-accessibleMLGdoesnottethercellulosefibrilsintoaload-bearingnetwork.
endo-β-1,4-Mannanasesfrombluemussel,Mytilusedulis:purification,characterization,andmodeofaction.
Xu,B.,Hägglund,P.,Stålbrand,H.&Janson,J.C.(2002).JournalofBiotechnology,92(3),267-277.
LinktoArticle
ReadAbstract
Twovariantsofan
endo-β-1,4-mannanasefromthedigestivetractofbluemussel,
Mytilusedulis,werepurifiedbyacombinationofimmobilizedmetalionaffinitychromatography,sizeexclusionchromatographyintheabsenceandpresenceofguanidinehydrochlorideandionexchangechromatography.Thepurifiedenzymeswerecharacterizedwithregardtoenzymaticproperties,molecularweight,isoelectricpoint,aminoacidcompositionandN-terminalsequence.Theyaremonomericproteinswithmolecularmassesof39 216and39 265Da,respectively,asmeasuredbyMALDI-TOFmassspectrometry.Theisoelectricpointsofbothenzymeswereestimatedtobearound7.8,howeverslightlydifferent,byisoelectricfocusinginpolyacrylamidegel.TheenzymesarestablefrompH4.0to9.0andhavetheirmaximumactivitiesatapHabout5.2.Theoptimumtemperatureofbothenzymesisaround50–55°C.Theirstabilitydecreasesrapidlywhengoingfrom40to50°C.TheN-terminalsequences(12residues)wereidenticalforthetwovariants.Theycanbecompletelyrenaturedafterdenaturationin6Mguanidinehydrochloride.Theenzymesre
ADIlydegradethegalactomannansfromlocustbeangumandivorynutmannanbutshownocross-specificityforxylanandcarboxymethylcellulose.Thereisnobindingabilityobservedtowardscelluloseandmannan.
Introducingporousgraphitizedcarbonliquidchromatographywithevaporativelightscatteringandmassspectrometrydetectionintocellwalloligosaccharideanalysis.
Westphal,Y.,Schols,H.A.,Voragen,A.G.J.&Gruppen,H.(2010).JournalofChromatographyA,1217(5),689-695.
LinktoArticle
ReadAbstract
Separationandcharacterizationofcomplexmixturesofoligosaccharidesisquitedifficultand,dependingonelutionconditions,structuralinformationisoftenlost.Therefore,theuseofaporous-graphitized-carbon(PGC)-HPLC-ELSD-MS
n-methodasanalyticaltoolfortheanalysisofoligosaccharidesderivedfromplantcellwallpolysaccharideshasbeeninvestigated.ItisdemonstratedthatPGC-HPLCcanbewidelyusedforneutralandacidicoligosaccharidesderivedfromcellwallpolysaccharides.Fur
Thermore,itisanon-modifyingtechniquethatenablesthecharacterizationofcellwalloligosaccharidescarrying,e.g.acetylgroupsandmethylesters.Neutraloligosaccharidesareseparatedbasedontheirsizeaswellasontheirtypeoflinkageandresulting3D-structure.Seriesoftheplanarβ-(1,4)-xylo-andβ-(1,4)-gluco-oligosaccharidesareretainedmuchmorebythePGCmaterialthantheseriesofβ-(1,4)-galacto-,β-(1,4)-manno-andα-(1,4)-gluco-oligosaccharides.Chargedoligomerssuchasα-(1,4)-galacturonicacidoligosaccharidesarestronglyretainedandareelutedonlyafteradditionoftrifluoroaceticaciddependingontheirnetcharge.Online-MS-couplingusinga1:1splitterenablesquantitativedetectionofELSDaswellassimpleidentificationofmanyoligosaccharides,evenwhenseparationofoligosaccharideswithinacomplexmixtureisnotcomplete.Consequently,PGC-HPLC-separationincombinationwithMS-detectiongivesapowerfultooltoidentifyawiderangeofneutralandacidicoligosaccharidesderivedfromvariouscellwallpolysaccharides.
Influenceofamannanbindingfamily32carbohydratebindingmoduleontheactivityoftheappendedmannanase.
Mizutani,K.,Fernandes,V.O.,Karita,S.,Luís,A.S.,Sakka,M.,Kimura,T.,
Jackson,A.,Zhang,X.,Fontes,C.M.G.A.,Gilbert,H.J.&Sakka,K.(2012).
AppliedandEnvironmentalMicroBIOLOGy,78(14),4781-4787.
LinktoArticle
ReadAbstract
Ingeneral,cellulasesandhemicellulasesaremodularenzymesinwhichthecatalyticdomainisappendedtooneormorenoncatalyticcarbohydratebindingmodules(CBMs).CBMs,byconcentratingtheparentalenzymeattheirtargetpolysaccharide,increasethecapacityofthecatalyticmoduletobindthesubstrate,leadingtoapotentiationincatalysis.ClostridiumthermocellumhypotheticalproteinCthe_0821,definedhereasC.thermocellumMan5A,isamodularproteincomprisinganN-terminalsignalpeptide,afamily5glycosidehydrolase(GH5)catalyticmodule,afamily32CBM(CBM32),andaC-terminaltypeIdockerinmodule.RecentproteomicstudiesrevealedthatCthe_0821isoneofthemajorcellulosomalenzymeswhenC.thermocellumisculturedoncellulose.HereweshowthattheGH5catalyticmoduleofCthe_0821displaysendomannanaseactivity.C.thermocellumMan5Ahydrolyzessolublekonjacglucomannan,solublecarobgalactomannan,andinsolubleivorynutmannanbutdoesnotattackthehighlygalactosylatedmannanfromguargum,suggestingthattheenzymeprefersunsubstitutedβ-1,4-mannosidelinkages.TheCBM32ofC.thermocellumMan5Adisplaysapreferenceforthenonreducingendsofmannooligosaccharides,althoughtheproteinmoduleexhibitsmeasurableaffinityfortheterminiofβ-1,4-linkedglucooligosaccharidessuchascellobiose.CBM32potentiatestheactivityofC.thermocellumMan5Aagainstinsolublemannansbuthasnosignificanteffectonthecapacityoftheenzymetohydrolyzesolublegalactomannansandglucomannans.TheproductprofileofC.thermocellumMan5AisaffectedbythepresenceofCBM32.
Anon-modularendo-β-1,4-mannanasefromPseudomonasfluorescenssubspeciescellulosa.
Braithwaite,K.L.,Black,G.W.,Hazlewood,G.P.,Ali,B.R.S.&Gilbert,H.J.(1995).Biochem.J,305,1005-1010.
LinktoArticle
ReadAbstract
Pseudomonasfluorescenssubsp.
cellulosawhenculturedinthepresenceofcarobgalactomannandegradedthepolysaccharide.Toisolategene(s)from
P.fluorescenssubsp.
cellulosaencodingendo-β-1,4-mannanase(mannanase)activity,agenomiclibraryof
PseudomonasDNA,constructedinlam
BDaZAPII,wasscreenedformannanase-expressingclonesusingthedye-labelledsubstrate,azo-carobgalactomannan.Thenucleotidesequenceofthepseudomonadinsertfromamannanase-positiveclonerevealedasingleopenreadingframeof1257bpencodingaproteinof
Mr46,938.ThededucedN-terminalsequenceoftheputativepolypeptideconformedtoatypicalprokaryoticsignalpeptide.Truncatedderivativesofthemannanase,lacking54and16residuesfromtheN-andC-terminusrespectivelyofthematureformoftheenzyme,didnotexhibitcatalyticactivity.Inspectionoftheprimarystructureofthemannanasedidnotrevealanyobviouslinkersequencesorproteinmotifscharacteristicofthenon-catalyticdomainslocatedinother
Pseudomonasplantcellwallhydrolases.Thesedataindicatethatthemannanaseisnon-modulator,comprisingasinglecatalyticdomain.ComparisonofthemannanasesequencewiththoseintheSWISSPROTdatabaserevealedgreatestsequencehomologywiththemannanasefrom
Bacillussp.Thusthe
PseudomonasenzymebelongstoglycosylhydrolaseFamily26,afamilycontainingmannanasesandendoglucanases.Analysisofthesubstratespecificityofthemannanaseshowedthattheenzymehydrolysedmannanandgalactomannan,butdisplayedlittleactivitytowardsotherpolysaccharideslocatedintheplantcellwall.TheenzymehadapHoptimumofapprox.7.0,wasresistanttoproteolysisandhadan
Mrof46,000whenexpressedby
Escherichiacoli.
Restrictedaccessofproteinstomannanpolysaccharidesinintactplantcellwalls.
Marcus,S.E.,Blake,A.W.,Benians,T.A.S,Lee,K.J.,Poyser,C.,Donaldson,L.,Leroux,O.,Rogowski,A.,Petersen,H.L.,Boraston,A.,Gilbert,H.J.,Willats,W.G.T.&PaulKnox,J.(2010).ThePlantJournal,64(2),191-203.
LinktoArticle
ReadAbstract
Howthediversepolysaccharidespresentinplantcellwallsareassembledandinterlinkedintofunctionalcompositesisnotknownindetail.Here,usingtwonovelmonoclonalantibodiesandacarbohydrate-bindingmoduledirectedagainstthemannangroupofhemicellulosecellwallpolysaccharides,weshowthatmolecularrecognitionofmannanpolysaccharidespresentinintactcellwallsisseverelyrestricted.Insecondarycellwalls,mannanesterificationcanpreventproberecognitionofepitopes/ligands,anddetectionofmannansinprimarycellwallscanbeeffectivelyblockedbythepresenceofpectichomogalacturonan.Maskingbypectichomogalacturonanisshowntobeawidespreadphenomenoninparenchymasystems,andmaskedmannanwasfoundtobeafeatureofcellwallregionsatpitfields.Directfluorescenceimagingusingamannan-specificcarbohydrate-bindingmoduleandsequentialenzymetreatmentswithanendo-β-mannanaseconfirmedthepresenceofcrypticepitopesandthatthemaskingofprimarycellwallmannanbypectinisapotentialmechanismforcontrollingcellwallmicro-environments.
Acarbohydratebindingmoduleasadiversity‐carryingscaffold.
Gunnarsson,L.C.,Karlsson,E.N.,Albrekt,A.-S.,Andersson,M.,Holst,O.&Ohlin,M.(2004).ProteinEngineering,Design&Selection,17(3),213-221.
LinktoArticle
ReadAbstract
Thegrowingfieldofbiotechnologyisinconstantneedofbindingproteinswithnovelproperties.Notjustbindingspecificitiesandaffinitiesbutalsostructuralstabilityandproductivityareimportantcharacteristicsforthepurposeoflarge‐scaleapplications.Inordertofindsuchmolecules,librariesarecreatedbydiversifyingnaturallyoccurringbindingproteins,whichinthosecasesserveasscaffolds.Inthisstudy,weinvestigatedtheuseofathermostablecarbohydratebindingmodule,CBM4‐2,fromaxylanasefoundinRhodothermusmarinus,asadiversity‐carryingscaffold.Acombinatoriallibrarywascreatedbyintroducingrestrictedvariationat12positionsinthecarbohydratebindingsiteoftheCBM4‐2.Despitethesmallsizeofthelibrary(1.6×106clones),variantsspecifictowardsdifferentcarbohydratepolymers(birchwoodxylan,Avicelandivorynutmannan)aswellasaglycoprotein(humanIgG4)weresuccessfullyselectedfor,usingthephagedisplaymethod.Investigatedclonesshowedahighproductivity(onaverage69mgofpurifiedprotein/lshakeflaskculture)whenproducedinEscherichiacoliandtheywereallstablemoleculesdisplayingahighmeltingtransitiontemperature(75.7±5.3°C).AllourresultsdemonstratethattheCBM4‐2moleculeisasuitablescaffoldforcreatingvariantsusefulindifferentbiotechnologicalapplications.
Purificationandsomepropertiesofathermostableacidicendo‐β‐1,4‐D‐mannanasefromSclerotium(Athelia)rolfsii.
Sachslehner,A.&Haltrich,D.(1999).FEMSMicrobiologyLetters,177(1),47-55.
LinktoArticle
ReadAbstract
ThephytopathogenicfungusSclerotium(Athelia)rolfsiiformsonemajorendo-β-1,4-D-mannanase(EC3.2.1.78)undernon-inducedandderepressedconditions,i.e.afterdepletionofglucosewhichwasusedastheonlycarbohydratesubstrateforitscultivation.Thismannanasewaspurifiedtoelectrophoretichomogeneitybyammoniumsulfateprecipitation,hydrophobicinteractionchromatography,anionexchangechromatographyandgelfiltration.Theenzymeisaglycoproteinwithamolecularmassof46.5±2kDa(SDS-PAGE),anisoelectricpointof2.75,andapHoptimumof3.0–3.5.Theenzymeisespeciallystableintheacidicregionwithanexceptionalhalf-lifeofactivityof41daysatpH4.5and50°C.Itexertsactivityonβ-1,4-mannanfromivorynut,whichishydrolyzedmainlytomannobioseandmannotriose,aswellasonglucomannan,galactomannan,galactoglucomannan,andmannooligosaccharidesnotsmallerthanmannotetraose.Themainend-productsmannotrioseandtoalesserextentmannobioseinhibititsactivitymoderately.
X4modulesrepresentanewfamilyofcarbohydrate-bindingmodulesthatdisplaynovelproperties.
Bolam,D.N.,Xie,H.,Pell,G.,Hogg,D.,Galbraith,G.,Henrissat,B.&Gilbert,H.J.(2004).JournalofBiologicalChemistry,279(22),22953-22963.
LinktoArticle
ReadAbstract
Thehydrolysisoftheplantcellwallbymicrobialglycosidehydrolasesandesterasesistheprimarymechanismbywhichstoredorganiccarbonisutilizedinthebiosphere,andthustheseenzymesareofconsiderablebiologicalandindustrialimportance.Plantcellwall-degradingenzymesingeneraldisplayamodulararchitecturecomprisingcatalyticandnon-catalyticmodules.TheX4modulesinglycosidehydrolasesrepresentalargefamilyofnon-catalyticmoduleswhosefunctionisunknown.HereweshowthattheX4modulesfromaCellvibriojaponicusmannanase(Man5C)andarabinofuranosidase(Abf62A)bindtopolysaccharides,andthustheseproteinscompriseanewfamilyofcarbohydrate-bindingmodules(CBMs),designatedCBM35.TheMan5C-CBM35bindstogalactomannan,insolubleamorphousmannan,glucomannan,andmanno-oligosaccharidesbutdoesnotinteractwithcrystallinemannan,cellulose,cello-oligosaccharides,orotherpolysaccharidesderivedfromtheplantcellwall.Man5C-CBM35alsopotentiatesmannanaseactivityagainstinsolubleamorphousmannan.Abf62A-CBM35interactswithunsubstitutedoat-speltxylanbutnotsubstitutedformsofthehemicelluloseorxylo-oligosaccharides,andrequirescalciumforbinding.Thisisinsharpcontrasttootherxylan-bindingCBMs,whichinteractinacalcium-independentmannerwithbothxylo-oligosaccharidesanddecoratedxylans.
DigestionofsinglecrystalsofmannanIbyanendo‐mannanasefromTrichodermareesei.
Sabini,E.,Wilson,K.S.,Siika‐aho,M.,Boisset,C.&Chanzy,H.(2000).EuropeanJournalofBiochemistry,267(8),2340-2344.
LinktoArticle
ReadAbstract
TheenzymaticdegradationofsinglecrystalsofmannanIwiththecatalyticcoredomainofaβ-mannanase(EC3.2.1.78orMan5A)fromTrichodermareeseiwasinvestigatedbytransmissionelectronmicroscopyandelectrondiffraction.Theenzymeattacktookplaceattheedgeofthecrystalsandprogressedtowardstheircentres.Quiteremarkablythecrystallineintegrityofthecrystalswaspreservedalmosttotheendofthedigestionprocess.Thisbehaviourisconsistentwithanendo-mechanism,wheretheenzymeinteractswiththeaccessiblemannanchainslocatedatthecrystalperipheryandcleavesonemannanmoleculeatatime.Theendomodeofdigestionofthecrystalswasconfirmedbyananalysisofthesolubledegradationproducts.
DoescelluloseIIexistinnativealgacellwalls?CellulosestructureofDerbesiacellwallsstudiedwithSFG,IRandXRD.
Park,Y.B.,Kafle,K.,Lee,C.M.,Cosgrove,D.J.,&Kim,S.H.(2015).Cellulose,22(6),3531-3540.
LinktoArticle
ReadAbstract
Innature,algaeproducecelluloseIwhereallglucanchainsarealignedparallel.However,thepresenceofcelluloseIIwithanti-parallelglucanchainshasbeenreportedforcertainDerbesia(Chlorophyceaealgae)cellwalls;ifthisistrue,itwouldmeananewbiologicalprocessforsynthesizingcellulosethathasnotyetbeenrecognized.Toanswerthisquestion,weexaminedcellulosestructureinDerbesiacellwalls,intactaswellastreatedwithcelluloseisolationprocedures,usingsum-frequency-generationspectroscopy,infrared(IR)spectroscopyandX-raydiffraction(XRD).Derbesiawallscontainlargeamountsofmannanandsmallamountsofcrystallinecellulose.EvidenceforcelluloseIIintheintactcellwallswasnotfound,whereascelluloseIIinthetrifluoroaceticacid(TFA)treatedcellwallsamplesweredetectedbyIRandXRD.Acontrolexperimentconductedwithball-milledAvicelcellulosesamplesshowedthatcelluloseIIstructurecouldbeformedasaresultofTFAtreatmentanddryingofamorphouscellulose.ThesedatasuggestthatthecelluloseIIstructuredetectedintheTFA-treatedDerbesiagametophytewallsamplesismostlikelyduetoreorganizationofamorphouscelluloseduringthesamplepreparation.OurresultscontradictthepreviousreportofcelluloseIIinnativealgacellwalls.EvenifthecrystallinecelluloseIIexistsinintactDerbesiagametophytecellwalls,itsamountwouldbeverysmall(belowthedetectionlimit)andthusbiologicallyinsignificant.
PurificationandCharacterizationofaThermostableβ-mannanasefromBacillussubtilisBE-91:PotentialApplicationinInflammatoryDiseases.
Cheng,L.,Duan,S.,Feng,X.,Zheng,K.,Yang,Q.&Liu,Z.(2016).BioMedResearchInternational,ArticleID6380147.
LinktoArticle
ReadAbstract
β-mannanasehasshowncompellingbiologicalfunctionsbecauseofitsregulatoryrolesinmetabolism,inflammation,andoxidation.Thisstudyseparatedandpurifiedtheβ-mannanasefromBacillussubtilisBE-91,whichisapowerfulhemicellulose-degradingbacteriumusinga“two-step”methodcomprisingultrafiltrationandgelchromatography.Thepurifiedβ-mannanase(about28.2 kDa)showedhighspecificactivity(79,859.2 IU/mg).TheoptimumtemperatureandpHwere65°Cand6.0,respectively.Moreover,theenzymewashighlystableattemperaturesupto70°CandpH4.5-7.0.Theβ-mannanaseactivitywassignificantlyenhancedinthepresenceofMn+,Cu2+,Zn2+,Ca2+,Mg2+,andAl3+andstronglyinhibitedbyBa2+,andPb2+.KmandVmaxvaluesforlocustbeangumwere7.14 mg/mLand107.5 μmol/min/mLversus1.749 mg/mLand33.45 µmol/min/mLforKonjacglucomannan,respectively.Therefore,β-mannanasepurifiedbythisworkshowsstabilityathightemperaturesandinweaklyacidicorneutralenvironments.Basedonsuchdata,theβ-mannanasewillhavepotentialapplicationsasadietarysupplementintreatmentofinflammatoryprocesses.
InfluenceofStereochemistryonRelativeReactivitiesofGlucosylandMannosylResiduesinKonjacGlucomannan(KGM).
Zhang,Q.&Mischnick,P.(2017).MacromolecularChemistryandPhysics,218(17),1700119.
LinktoArticle
ReadAbstract
MethylationinwaterwithNaOH/MeIisappliedtostudytheinfluenceofthestereochemistryonrelativereactivitiesofD-mannosyl(M)comparedtoD-glucosyl(G)unitsinkonjacglucomannan(KGM).ThepHiskeptconstantat13.6overthecourseofthereactionandaliquotsareremovedaftervarioustimeintervals.MethyldistributioninGandMresiduesisdeterminedafterperethylation,hydrolysis,andconversiontoO-ethyl-O-methyl-alditolacetates.TheorderofrelativerateconstantsdeterminedfortheO-methylKonjacglucomannans(M-KGMs)indegreeofsubstitution(DS)range0.3–0.8isG-k6>M-k6>G-k2≈M-k2>M-k3>G-k3.OligosaccharidesobtainedbypartialhydrolysisafterfullprotectionofM-KGMwithMeI-d3arelabeledwithm-amino-benzoicacidandmeasuredbyliquidchromatography–electrosprayionization–massspectrometry.DS/DPprofilesareinfullagreementwithrandomdistributionofmethylgroups.ThermalpropertiesofM-KGMsareanalyzedbydifferentialscanningcalorimetryandthermogravimetricanalysis.DecompositiontemperatureincreaseswithDS,whilethetemperatureofanendothermicchangedecreases.
GeneticandfunctionalcharacterizationofanovelGH10endo-β-1,4-xylanasewitharicin-typeβ-trefoildomain-likedomainfromLuteimicrobiumxylanilyticumHY-24.(2017).
Kim,D.Y.,Lee,S.H.,Lee,M.J.,Cho,H.Y.,Lee,J.S.,Rhee,Y.H.,Shin,D.H.,SonK.H.&Park,H.Y.InternationalJournalofBiologicalMacromolecules,InPress.
LinktoArticle
ReadAbstract
Thegene(1488-bp)encodinganovelGH10endo-β-1,4-xylanase(XylM)consistingofanN-terminalcatalyticGH10domainandaC-terminalricin-typeβ-trefoillectindomain-like(RICIN)domainwasidentifiedfromLuteimicrobiumxylanilyticumHY-24.TheGH10domainofXylMwas72%identicaltothatofMicromonosporalupineendo-β-1,4-xylanaseandtheRICINdomainwas67%identicaltothatofActinospicarobiniaehypotheticalprotein.Therecombinantenzyme(rXylM:49kDa)exhibitedmaximumactivitytowardbeechwoodxylanat65°CandpH6.0,whiletheoptimumtemperatureandpHofitsC-terminaltruncatedmutant(rXylM△RICIN:35kDa)were45°Cand5.0,respectively.Afterpre-incubationof1hat60°C,rXylMretainedover80%ofitsinitialactivity,butthethermostabilityofrXylM△RICINwassharplydecreasedattemperaturesexceeding40°C.Thespecificactivity(254.1Umg-1)ofrXylMtowardoatspeltsxylanwas3.4-foldhigherthanthat(74.8Umg-1)ofrXylM△RICINwhenthesamesubstratewasused.rXylMdisplayedsuperiorbindingcapacitiestoligninandinsolublepolysaccharidescomparedtorXylM△RICIN.Enzymatichydrolysisofβ-1,4-D-xylooligosaccharides(X3-X6)andbirchwoodxylanyieldedX3asthemajorproduct.TheresultssuggestthattheRICINdomaininXylMmightplayanimportantroleinsubstrate-bindingandbiocatalysis.
Megazyme特约代理
点击浏览大图收藏此产品
公司名称:
产品资料:
更新时间:
所 在 地:
生产地址:
浏览次数:
苏州蚂蚁淘生物科技有限公司
查看pdf文档
2015-11-20 15:22:24
上海市
1253
【简单介绍】
Megazyme代理,Megazyme上海代理,Megazyme北京代理,Megazyme总代理,Megazyme一级代理,Megazyme特约代理
苏州蚂蚁淘生物科技有限公司Megazyme专业代理,具体产品信息欢迎电询:4006551678
【详细说明】
世界*实验材料供应商Megazyme正式授权上海起发为其中国代理,Megazyme 在一直是行业的标杆,一直为广大科研客户提供zui为优质的产品和服务,上海起发一直秉承为中国科研客户带来的产品,的服务, 签约Megazyme 就是为了给广大科研客户带来更加完善的产品和服务,您的满意将是我们zui大的收获
Megazyme 中国代理,Megazyme 上海代理,Megazyme北京代理,Megazyme 广东代理,Megazyme 江苏代理 Megazyme 湖北代理, Megazyme 天津, Megazyme 黑龙江代理, Megazyme内蒙古代理, Megazyme 吉林代理, Megazyme 福建代理, Megazyme 江苏代理, Megazyme 浙江代理, Megazyme 四川代理,
爱尔兰Megazyme,Megazyme
爱尔兰Megazyme是一家全球的制造和供应高品质和创新的检测谷物,食品,饲料,发酵,乳制品和葡萄酒行业的技术。Megazyme成立于1988年,该公司目前提供了超过70种诊断试剂盒和超过300种其他试剂和底物
http://www.megazyme.com/