Purity~80%.Carefullyextractedandpurifiedtomaintaintheferulicacidcrosslinksinthenativearabinoxylan.Treatedtoremovestarch,β-glucanandprotein.Ara:Xyl=36:51.Glucose6.5%,mannose4.4%andgalactose1.6%
Novelsubstratesfortheautomatedandmanualassayofendo-1,4-β-xylanase.
Mangan,D.,Cornaggia,C.,Liadova,A.,McCormack,N.,Ivory,R.,McKie,V.A.,Ormerod,A.&McCleary,D.V.(2017).CarbohydrateResearch,445,14-22.
LinktoArticle
ReadAbstract
endo-1,4-β-Xylanase(EC3.2.1.8)isemployedacrossabroadrangeofindustriesincludinganimalfeed,brewing,baking,biofuels,detergentsandpulp(paper).Despiteitsimportance,arapid,reliable,reproduc
IBLe,automatableassayforthisenzymethatisbasedontheuseofachemicallydefinedsubstratehasnotbeendescribedtodate.Reportedhereinisanewenzymecoupledassayprocedure,termedtheXylX6assay,thatemploysanovelsubstrate,namely4,6-
O-(3-ketobutylidene)-4-nitrophenyl-β-4
5-
O-glucosyl-xylopentaoside.ThedevelopmentofthesubstrateandassociatedassayisdiscussedhereandtherelationshipbetweentheactivityvaluesobtainedwiththeXylX6assayversustr
ADItionalreducingsugarassaysanditsspecificityandreproducibilitywerethoroughlyinvestigated.
Hydrolysisofwheatflourarabinoxylan,acid-debranchedwheatflourarabinoxylanandarabino-xylo-oligosaccharidesbyβ-xylanase,α-L-arabinofuranosidaseandβ-xylosidase.
McCleary,B.V.,McKie,V.A.,Draga,A.,Rooney,E.,Mangan,D.&Larkin,J.(2015).CarbohydrateResearch,407,79-96.
LinktoArticle
ReadAbstract
Arangeofα-L-arabinofuranosyl-(1-4)-β-D-xylo-oligosaccharides(AXOS)wereproducedbyhydrolysisofwheatflourarabinoxylan(WAX)andaciddebranchedarabinoxylan(ADWAX),inthepresenceandabsenceofanAXH-d3α-L-arabinofuranosidase,byseveralGH10andGH11β-xylanases.ThestructuresoftheoligosaccharideswerecharacterisedbyGC-MSandNMRandbyhydrolysisbyarangeofα-L-arabinofuranosidasesandβ-xylosidase.TheAXOSwerepurifiedandusedtocharacterisetheactionpatternsofthespecificα-L-arabinofuranosidases.Theseenzymes,incombinationwitheitherCellvibriomixtusorNeocallimastixpatriciarumβ-xylanase,wereusedtoproduceelevatedlevelsofspecificAXOSonhydrolysisofWAX,suchas32-α-L-Araf-(1-4)-β-D-xylobiose(A3X),23-α-L-Araf-(1-4)-β-D-xylotriose(A2XX),33-α-L-Araf-(1-4)-β-D-xylotriose(A3XX),22-α-L-Araf-(1-4)-β-D-xylotriose(XA2X),32-α-L-Araf(1-4)-β-D-xylotriose(XA3X),23-α-L-Araf-(1-4)-β-D-xylotetraose(XA2XX),33-α-L-Araf-(1-4)-β-D-xylotetraose(XA3XX),23,33-di-α-L-Araf-(1-4)-β-D-xylotriose(A2+3XX),23,33-di-α-L-Araf-(1-4)-β-D-xylotetraose(XA2+3XX),24,34-di-α-L-Araf-(1-4)-β-D-xylopentaose(XA2+3XXX)and33,34-di-α-L-Araf-(1-4)-β-D-xylopentaose(XA3A3XX),manyofwhichhavenotpreviouslybeenproducedinsufficientquantitiestoallowtheiruseassubstratesinfurtherenzymicstudies.ForA2,3XX,yieldsofapproximately16%ofthestartingmaterial(wheatarabinoxylan)havebeenachieved.Mixturesoftheα-L-arabinofuranosidases,withspecificactiononAXOS,havebeencombinedwithβ-xylosidaseandβ-xylanasetoobtainanoptimalmixtureforhydrolysisofarabinoxylantoL-arabinoseandD-xylose.
Generationoftransgenicwheat(TriticumaestivumL.)accumulatingheterologousendo‐xylanaseorferulicacidesteraseintheendosperm.
Harholt,J.,Bach,I.C.,Lind‐Bouquin,S.,Nunan,K.J.,Madrid,S.M.,Brinch‐Pedersen,H.,Holm,P.B.&Scheller,H.V.(2010).PlantBiotechnologyJournal,8(3),351-362.
LinktoArticle
ReadAbstract
Endo-xylanase(fromBacillussubtilis)orferulicacidesterase(fromAspergillusniger)wereexpressedinwheatunderthecontroloftheendosperm-specific1DX5gluteninpromoter.Constructsbothwithandwithouttheendoplasmicreticulumretentionsignal(Lys-Asp-Glu-Leu)KDELwereused.TransgenicplantswererecoveredinallfourcasesbutnoqualitativedifferencescouldbeobservedwhetherKDELwasaddedornot.Endo-xylanaseactivityintransgenicgrainswasincreasedbetweentwoandthreefoldrelativetowildtype.Thegrainswereshrivelledandhada25%–33%decreaseinmass.Extensiveanalysisofthecellwallsshoweda10%–15%increaseinarabinosetoxyloseratio,a50%increaseintheproportionofwater-extractablearabinoxylan,andashiftintheMWofthewater-extractablearabinoxylanfrombeingmainlylargerthan85kDtobeingbetween2and85kD.Ferulicacidesterase-expressinggrainswerealsoshrivelled,andtheseedweightwasdecreasedby20%–50%.Noferulicacidesteraseactivitycouldbedetectedinwild-typegrainswhereasferulicacidesteraseactivitywasdetectedintransgeniclines.Thegraincellwallshad15%–40%increaseinwater-unextractablearabinoxylanandadecreaseinmonomericferulicacidbetween13%and34%.Inalltheplants,theobservedchangesareconsistentwithaplantresponsethatservestominimizetheeffectoftheheterologouslyexpressedenzymesbyincreasingarabinoxylanbiosynthesisandcross-linking.
Arsenalofplantcellwalldegradingenzymesreflectshostpreferenceamongplantpathogenicfungi.
King,B.C.,Waxman,K.D.,Nenni,N.V.,Walker,L.P.,Bergstrom,G.C.&Gibson,D.M.(2011).BiotechnolBiofuels,4(4).
LinktoArticle
ReadAbstract
Background:Thediscoveryanddevelopmentofnovelplantcellwalldegradingenzymesisakeysteptowardsmoreefficientdepolymerizationofpolysaccharidestofermentablesugarsfortheproductionofliquidtransportationbiofuelsandotherbioproducts.Theindustrialfungus
Trichodermareeseiisknowntobehighlycellulolyticandisamajorindustrialmicrobialsourceforcommercialcellulases,xylanasesandothercellwalldegradingenzymes.However,enzyme-
Prospectingresearchcontinuestoidentifyopportunitiestoenhancetheactivityof
T.reeseienzymepreparationsbysupplementingwithenzymaticdiversityfromothermicrobes.Thegoalofthisstudywastoevaluatetheenzymaticpotentialofabroadrangeofplantpathogenicandnon-pathogenicfungifortheirabilitytodegradeplantbiomassandisolatedpolysaccharides.
Results:Large-scalescreeningidentifiedarangeofhydrolyticactivitiesamong348uniqueisolatesrepresenting156speciesofplantpathogenicandnon-pathogenicfungi.Hierarchicalclusteringwasusedtoidentifygroupsofspecieswithsimilarhydrolyticprofiles.Amongmoderatelyandhighlyactivespecies,plantpathogenicspecieswerefoundtobemoreactivethannon-pathogensonsixofeightsubstratestested,withnosignificantdifferenceseenontheothertwosubstrates.Amongthepathogenicfungi,greaterhydrolysiswasseenwhentheyweretestedonbiomassandhemicellulosederivedfromtheirhostplants(commelinoidmonocotordicot).Although
T.reeseihasahydrolyticprofilethatishighlyactiveoncelluloseandpretreatedbiomass,itwaslessactivethansomenaturalisolatesoffungiwhentestedonxylansanduntreatedbiomass.
Conclusions:Severalhighlyactiveisolatesofplantpathogenicfungiwereidentified,particularlywhentestedonxylansanduntreatedbiomass.Therewerestatisticallysignificantpreferencesforbiomasstypereflectingthemonocotordicothostpreferenceofthepathogentested.Thesehighlyactivefungiarepromisingtargetsforidentificationandcharacterizationofnovelcellwalldegradingenzymesforindustrialapplications.
AnovelThermophilicxylanasefromAchaetomiumsp.Xz-8withhighcatalyticefficiencyandapplicationpotentialsinthebrewingandotherindustries.
Zhao,L.,Meng,K.,Shi,P.,Bai,Y.,Luo,H.,Huang,H.,Wang,Y.,Yang,P.&Yao,B.(2013).ProcessBiochemistry,48(12),1879-1885.
LinktoArticle
ReadAbstract
Thermophilicxylanasesareofgreatinterestfortheirwideindustrialapplicationprospects.Hereweidentifiedathermophilicxylanase(XynC01)ofglycosidehydrolase(GH)family10inathermophilicfungalstrainAchaetomiumsp.Xz-8.ThededucedaminoacidsofXynC01showedthehighestidentityof≤52%toexperimentallyverifiedxylanases.XynC01wasfunctionallyexpressedinPichiapastoris,showedoptimalactivityatpH5.5and75°CwithstabilityoverabroadpHrange(pH4.0–10.0)andattemperaturesof55°Candbelow.XynC01hadthehighestcatalyticefficiency(kcat/Km,3710mL/s/mg)everreportedforallGH10xylanases,andwasresistanttoalltestedmetalionsandchemicalreagents.Itshydrolysisproductsofvariousxylansweresimple,mainlyconsistingofxylobioseandxylose.Undersimulatedmashingconditions,XynC01alonehadacomparableeffectonfiltrationimprovementwithUltraflofromNovozymes(20.24%vs.20.71%),andshowedbetterperformancewhencombinedwithacommercialβ-glucanase(38.50%).Combiningallexcellentpropertiesdescribedabove,XynC01mayfinddiverseapplicationsinindustrialfields,especiallyinthebrewingindustry.
Plantpathogensasasourceofdiverseenzymesforlignocellulosedigestion.
Gibson,D.M.,King,B.C.,Hayes,M.L.&Bergstrom,G.C.(2011).
CurrentOpinioninMicroBIOLOGy,14(3),264-270.
LinktoArticle
ReadAbstract
Theplantcellwallisamajorbarrierthatmanyplantpathogensmustsurmountforsuccessfulinvasionoftheirplanthosts.Fullgenomesequencingofanumberofplantpathogenshasrevealedoftenlarge,complex,andredundantenzymesystemsfordegradationofplantcellwalls.Recentsurveyshavenotedthatplantpathogenicfungiarehighlycompetentproducersoflignocellulolyticenzymes,andtheirenzymeactivitypatternsreflecthostspecificity.Weproposethatplantpathogensmaycontributetobiofuelproductionasdiversesourcesofaccessoryenzymesformoreefficientconversionoflignocelluloseintofermentablesugars.
Roleof(1,3)(1,4)β-glucanincellwalls:Interactionwithcellulose.
Kiemle,S.N.,Zhang,X.,Esker,A.R.,Toriz,G.,Gatenholm,P.&Cosgrove,D.J.(2014).Biomacromolecules,15(5),1727-1736.
LinktoArticle
ReadAbstract
(1,3)(1,4)-β-D-Glucan(mixed-linkageglucanorMLG),acharacteristichemicelluloseinprimarycellwallsofgrasses,wasinvestigatedtodeterminebothitsroleincellwallsanditsinteractionwithcelluloseandothercellwallpolysaccharidesinvitro.BindingisothermsshowedthatMLGadsorptionontomicrocrystallinecelluloseisslow,irreversible,andtemperature-dependent.MeasurementsusingquartzcrystalmicrobalancewithdissipationmonitoringshowedthatMLGadsorbedirreversiblyontoamorphousregeneratedcellulose,formingathickhydrogel.Oligosaccharideprofilingusingendo-(1,3)(1,4)-β-glucanaseindicatedthattherewasnodifferenceinthefrequencyanddistributionof(1,3)and(1,4)linksinboundandunboundMLG.ThebindingofMLGtocellulosewasreducedifthecellulosesampleswerefirsttreatedwithcertaincellwallpolysaccharides,suchasxyloglucanandglucuronoarabinoxylan.ThetetheringfunctionofMLGincellwallswastestedbyapplyingendo-(1,3)(1,4)-β-glucanasetowallsamplesinaconstantforceextensometer.Cellwallextensionwasnotinduced,whichindicatesthatenzyme-accessibleMLGdoesnottethercellulosefibrilsintoaload-bearingnetwork.
Adsorptionofβ-glucosidasesintwocommercialpreparationsontopretreatedbiomassandlignin.
Haven,M.Ø.&Jørgensen,H.(2013).BiotechnologyforBiofuels,6(1),165.
LinktoArticle
ReadAbstract
Background:Enzymerecyclingisamethodtoreducetheproductioncostsforadvancedbioethanolbyloweringtheoveralluseofenzymes.Commercialcellulasepreparationsconsistofmanydifferentenzymesthatareimportantforefficientandcompletecellulose(andhemicellulose)hydrolysis.Thisabundanceofdifferentactivitiescomplicatesenzymerecyclingsincetheindividualenzymesbehavedifferentlyintheprocess.Previously,thegeneralperceptionwasthatβ-glucosidasescouldeasilyberecycledviatheliquidphase,astheyhavemostlybeenobservednottoadsorbtopretreatedbiomassoronlyadsorbtoaminorextent.Results:TheresultsfromthisstudywithCellic®CTec2revealedthatthevastmajorityoftheβ-glucosidaseactivitywaslostfromtheliquidphaseandwasadsorbedtotheresidualbiomassduringhydrolysisandfermentation.Adsorptionstudieswithβ-glucosidasesintwocommercialpreparations(Novozym188andCellic®CTec2)tosubstratesmimickingthecomponentsinpretreatedwheatstrawrevealedthattheAspergillusnigerβ-glucosidaseinNovozym188didnotadsorbsignificantlytoanyofthecomponentsinpretreatedwheatstraw,whereastheβ-glucosidaseinCellic®CTec2adsorbedstronglytolignin.Theextentofadsorptionofβ-glucosidasefromCellic®CTec2wasaffectedbybothtypeofbiomassandpretreatmentmethod.Withapproximately65%oftheβ-glucosidasesfromCellic®CTec2adsorbedontoligninfrompretreatedwheatstraw,theactivityoftheβ-glucosidasesintheslurrydecreasedbyonly15%.Thisdemonstratedthatsomeenzymeremainedactivedespitebeingbound.ItwaspossibletoreducetheadsorptionofCellic®CTec2β-glucosidasetoligninfrompretreatedwheatstrawbyadditionofbovineserumalbuminorpoly(ethyleneglycol).Conclusions:Contrarytotheβ-glucosidasesinNovozym188,theβ-glucosidasesinCellic®CTec2adsorbsignificantlytolignin.TheligninadsorptionobservedforCellic®CTec2isusuallynotaproblemduringhydrolysisandfermentationsincemostofthecatalyticactivityisretained.However,adsorptionofβ-glucosidasestoligninmayprovetobeaproblemwhentryingtorecycleenzymesintheproductionofadvancedbioethanol.
Megazyme特约代理
点击浏览大图收藏此产品
公司名称:
产品资料:
更新时间:
所 在 地:
生产地址:
浏览次数:
苏州蚂蚁淘生物科技有限公司
查看pdf文档
2015-11-20 15:22:24
上海市
1253
【简单介绍】
Megazyme代理,Megazyme上海代理,Megazyme北京代理,Megazyme总代理,Megazyme一级代理,Megazyme特约代理
苏州蚂蚁淘生物科技有限公司Megazyme专业代理,具体产品信息欢迎电询:4006551678
【详细说明】
世界*实验材料供应商Megazyme正式授权上海起发为其中国代理,Megazyme 在一直是行业的标杆,一直为广大科研客户提供zui为优质的产品和服务,上海起发一直秉承为中国科研客户带来的产品,的服务, 签约Megazyme 就是为了给广大科研客户带来更加完善的产品和服务,您的满意将是我们zui大的收获
Megazyme 中国代理,Megazyme 上海代理,Megazyme北京代理,Megazyme 广东代理,Megazyme 江苏代理 Megazyme 湖北代理, Megazyme 天津, Megazyme 黑龙江代理, Megazyme内蒙古代理, Megazyme 吉林代理, Megazyme 福建代理, Megazyme 江苏代理, Megazyme 浙江代理, Megazyme 四川代理,
爱尔兰Megazyme,Megazyme
爱尔兰Megazyme是一家全球的制造和供应高品质和创新的检测谷物,食品,饲料,发酵,乳制品和葡萄酒行业的技术。Megazyme成立于1988年,该公司目前提供了超过70种诊断试剂盒和超过300种其他试剂和底物
http://www.megazyme.com/