HighpuritydyedandcrosslinkedinsolubleAZCL-HE-Celluloseforidentificationofenzymeactivitiesinresearch,microBIOLOGicalenzymeassaysandinvitrodiagnosticanalysis.
Newchromogenicsubstratesfortheassayofalpha-amylaseand(1→4)-β-D-glucanase.
McCleary,B.V.(1980).CarbohydrateResearch,86(1),97-104.
LinktoArticle
ReadAbstract
Newchromogenicsubstrateshavebeendevelopedforthequantitativeassayofalpha-amylaseand(1→4)-β-D-glucanase.Thesewerepreparedbychemicallymodifyingamyloseorcellulosebeforedyeing,toincreasesolubility.Afterdyeing,thesubstrateswereeithersolubleorcouldbere
ADIlydispersedtoformfine,gelatinouss
USPensions.Assaysbasedontheuseofthesesubstratesaresensitiveandhighlyspecificforeitheralpha-amylaseor(1→4)-β-D-glucanase.Themethodofpreparationcanalsobeappliedtoobtainsubstratesforotherendo-hydrolases.
CharacterizationoftheErwiniachrysanthemiganlocus,involvedinGalactancatabolism.
Delangle,A.,Prouvost,A.F.,Cogez,V.,Bohin,J.P.,Lacroix,J.M.&Cotte-Pattat,N.H.(2007).JournalofBacteriology,189(19),7053-7061.
LinktoArticle
ReadAbstract
β-1,4-Galactanisamajorcomponentoftheramifiedregionsofpectin.AnalysisofthegenomeoftheplantpathogenicbacteriaErwiniachrysanthemirevealedthepresenceofaclusterofeightgenesencodingproteinspotentiallyinvolvedingalactanutilization.ThepredictedtransportsystemwouldcompriseaspecificporinGanLandanABCtransportermadeoffourproteins,GanFGK2.Degradationofgalactanswouldbecatalyzedbytheperiplasmic1,4-β-endogalactanaseGanA,whichreleasedoligogalactansfromtrimertohexamer.Aftertheirtransportthroughtheinnermembrane,oligogalactanswouldbedegradedintogalactosebythecytoplasmic1,4-β-exogalactanaseGanB.Mutantsaffectedfortheporinorendogalactanasewereunabletogrowongalactans,buttheygrewongalactoseandonamixtureofgalactotriose,galactotetraose,galactopentaose,andgalactohexaose.Mutantsaffectedfortheperiplasmicgalactanbindingprotein,thetransporterATPase,ortheexogalactanasewereonlyabletogrowongalactose.Thus,thephenotypesofthesemutantsconfirmedthefunctionalityoftheganlocusintransportandcatabolismofgalactans.ThesemutationsdidnotaffectthevirulenceofE.chrysanthemionchicoryleaves,potatotubers,orSaintpauliaionantha,suggestinganaccessoryroleofgalactanutilizationinthebacterialpathogeny.
EffectofpH,temperatureanddietondigestiveenzymeprofilesinthemudcrab,Scyllaserrata.
Pavasovic,M.,Richardson,N.A.,Anderson,A.J.,Mann,D.&Mather,P.B.(2004).Aquaculture,242(1),641-654.
LinktoArticle
ReadAbstract
Commercialfarmingofthemudcrab
ScyllaserrataisasignificantindustrythroughoutSouthEastAsia.Thelimitedscientificknowledgeofmudcrabnutritionalrequirementsanddigestiveprocesses,however,isrecognisedasamajorconstrainttothefuturegrowthofthisindustry.Tobetterunderstandthemechanismsofdigestioninthemudcrabwehaveanalysedthediversityofdigestiveenzymesfromthemidgut(MG)gland.Significantprotease,amylase,cellulaseandxylanaseactivitiesweredetectedinsolubleextractsfromthisorgan.Temperatureprofilesforallenzymeswerebasicallysimilarwithoptimalactivitiesobservedat50°C.ExaminationofpHtolerancesrevealedoptimalactivitiesforproteaseandamylaseatpH7whilemaximumcellulaseandxylanaseactivitieswereobservedatpH5.5.Underoptimumconditions,proteaseandamylaseactivitieswereapproximatelytwoordersofmagnitudegreaterthanthoseseenforeithercellulaseorxylanase.Interestingly,MGextractswereabletoliberateglucosefromeitherstarchorcarboxymethyl(CM)-cellulosesuggestingthatarangeofcarbohydratesmaybeutilisedasenergysources.Theeffectsofdietarycarbohydratesonfeeddigestibility,digestiveenzymelevelsandgrowthwerealsostudiedbyinclusionofadditionalstarchorCM-celluloseattheexpenseofcaseininformulateddiets.Itwasshownthatamylase,cellulaseandxylanaseactivitiesinextractsfromthemidgutglandwerehighestinmudcrabsfeddietscontaining47%carbohydrate.Basedonthesefindings,wesuggestthatthe
ABIlityofthemudcrabtomodulatedigestiveenzymeactivitiesmayrepresentamechanismtomaximiseaccesstoessentialnutrientswhenthedietaryprofilechanges.
Towardsamolecularunderstandingofsymbiontfunction:identificationofafungalgeneforthedegradationofxylaninthefungusgardensofleaf-cuttingants.
Schiøtt,M.,Licht,H.H.D.F.,Lange,L.&Boomsma,J.J.(2008).BMCMicrobiology,8(1),40.
LinktoArticle
ReadAbstract
Background:Leaf-cuttingantsliveinsymbiosiswithafungusthattheyrearforfoodbyprovidingitwithliveplantmaterial.Untilrecentlythefungus"maininferredfunctionwastomakeotherwiseinaccess
IBLecellwalldegradationproductsavailabletotheants,butnewstudieshavesheddoubtonthisidea.Toprovideevidenceforthecellwalldegradingcapacityoftheattineantsymbiont,wedesignedPCRprimersfromconservedregionsofknownxylanasegenes,tobeusedinPCRwithgenomicDNAfromthesymbiontastemplate.Wealsomeasuredxylanase,cellulaseandproteinaseactivitiesinthefungusgardensinordertoinvestigatethedynamicsofdegradationactivities.
Results:Weclonedaxylanasegenefromthemutualisticfungusof
Acromyrmexechinatior,determineditsproteinsequence,andinserteditinayeastexpressionvectortoconfirmitssubstratespecificity.Ourresultsshowthatthefungushasafunctionalxylanasegene.Wealsoshowbylabexperimentsinvivothattheactivityoffungalxylanaseandcellulaseisnotevenlydistributed,butconcentratedinthelowerlayeroffungusgardens,withonlymodestactivityinthemiddlelayerwheregongylidiaareproducedandintermediateactivityinthenewlyestablishedtoplayer.Thisverticaldistributionappearstobenegativelycorrelatedwiththeconcentrationofglucose,whichindicatesadirectlyregulatingroleofglucose,ashasbeenfoundinotherfungiandhasbeenpreviouslysuggestedfortheantfungalsymbiont.
Conclusion:Themutualisticfungusof
Acromyrmexechinatiorhasafunctionalxylanasegeneandisthuspresumablyabletoatleastpartiallydegradethecellwallsofleaves.Thisfindingsupportsasaprotrophicoriginofthefungalsymbiont.Theobserveddistributionofenzymeactivityleadsustoproposethatleaf-substratedegradationinfungusgardensisamulti-stepprocesscomparabletonormalbiodegradationoforganicmatterinsoilecosystems,butwiththecrucialdifferencethatasinglefungalsymbiontrealizesmostofthestepsthatarenormallyprovidedbyaseriesofmicroorganismsthatcolonizefallenleavesinadistinctsuccession.
Influenceofdietaryproteinondigestiveenzymeactivity,growthandtailmusclecompositioninredclawcrayfish,Cheraxquadricarinatus(vonMartens).
Pavasovic,A.,Anderson,A.J.,Mather,P.B.&Richardson,N.A.(2007).AquacultureResearch,38(6),644-652.
LinktoArticle
ReadAbstract
Thisstudywasconductedtoevaluatetheeffectsofdietaryproteinondigestiveenzymeprofiles,growthandtailmusclecompositioninthefreshwaterredclawcrayfish,Cheraxquadricarinatus.Crayfishwerefedfivedietsthatconsistedofacommercialcrayfishpelletandexperimentaldietscontaining13%,18%,25%or32%crudeprotein(CP),foraperiodof12weeks.Analysisofdigestiveenzymeprofilesfromthemidgutgland(MG)revealedapositivecorrelationbetweenprotease,amylaseandcellulaseactivitiesanddietaryproteinlevel.Foralltreatments,carbohydraseactivitylevels(cellulaseandamylase)weresignificantlyhigherthanthosedetectedforprotease.Asdietaryproteinwaselevated,therewasageneralincreaseinspecificgrowthrate(SGR),withthehighestSGR(0.58±0.06)valuesobservedincrayfishfedthedietcontaining25%CP.Feedconversionratio(FCR)rangedbetween5.84and6.97anddidnotdiffersignificantlyamongthetreatmentgroupsincludingthereferencediet,withtheexceptionofthelow-proteindiet(13%CP)whichshowedanFCRof9.31.Finally,regressionanalysisrevealedastrongpositivecorrelationbetweenthelevelofdietaryproteinandCPcontentinthetailmuscle(P=0.004;r2)=0.99).
AnovelantifungalPseudomonasfluorescensisolatedfrompotatosoilsinGreenland.
Michelsen,C.F.&Stougaard,P.(2011).CurrentMicrobiology,62(4),1185-1192.
LinktoArticle
ReadAbstract
ArhizobacteriumwithhighantifungalactivitywasisolatedfromapotatofieldatInneruulalik,SouthGreenland.PhylogeneticanalysisbasedonmultilocussequencetypingshowedthatthebacteriumwasaffiliatedwithstrainsofPseudomonasfluorescens.Thebacterium,denotedasPseudomonasfluorescensIn5,inhibitedinvitroabroadrangeofphytopathogenicfungi,andtheantifungalactivityincreasedwithdecreasingtemperature.MicrocosmexperimentsdemonstratedthatP.fluorescensIn5protectedtomatoseedlingsfromRhizoctoniasolani.TransposonmutagenesisshowedthatthemajorcausefortheantifungalactivityofP.fluorescensIn5wasanovelnon-ribosomalpeptidesynthase(NRPS)gene.Inaddition,transposonmutagenesisshowedthatP.fluorescensIn5alsocontainedaputativequinoproteinglucosedehydrogenasegene,whichwasinvolvedingrowthinhibitionofphytopathogenicfungi.AlthoughP.fluorescensIn5containedthecapacitytosynthesizehydrogencyanide,β-1,3-glucanase,protease,andchitinase,thesedidnotseemtoplayaroleintheinvitroandmicrocosmantifungalassays.
Characterizationofanewoxidant-stableserineproteaseisolatedbyfunctionalmetagenomics.
Biver,S.,Portetelle,D.&Vandenbol,M.(2013).SpringerPlus,2(1),410.
LinktoArticle
ReadAbstract
Anovelserineproteasegene,SBcas3.3,wasidentifiedbyfunctionalscreeningofaforest-soilmetagenomiclibraryonagarplatessupplementedwithAZCL-casein.OverproductioninEscherichiacolirevealedthattheenzymeisproducedasa770-amino-acidprecursorwhichisprocessedtoamatureproteaseof~55kDa.Thelatterwaspurifiedbyaffinitychromatographyforcharacterizationwiththeazocaseinsubstrate.TheenzymeprovedtobeanalkalineproteaseshowingmaximalactivitybetweenpH9and10andat50°C.Treatmentwiththechelatingagentethylenediaminetetraaceticacidirreversiblydenaturedtheprotease,whosestabilitywasfoundtodependstrictlyoncalciumions.Theenzymeappearedrelativelyresistanttodenaturingandreducingagents,anditsactivitywasenhancedinthepresenceof10ml/lnonionicdetergent(Tween20,Tween80,orTritonX-100).Moreover,SBcas3.3displayedoxidantstability,afeatureparticularlysoughtinthedetergentandbleachingindustries.SBcas3.3wasactivatedbyhydrogenperoxideatconcentrationsupto10g/landitstillretained30%ofactivityin50g/lH2O2.
Cloningandrelationalanalysisof15novelfungalendoglucanasesfromfamily12glycosylhydrolase.
Goedegebuur,F.,Fowler,T.,Phillips,J.,vanderKley,P.,vanSolingen,P.,Dankmeyer,L.&Power,S.D.(2002).CurrentGenetics,41(2),89-98.
LinktoArticle
ReadAbstract
Cellulasesbelongtothelargefamilyofglycosylhydrolases(GHs)andareproducedbyavarietyofbacteriaandfungi.Theseextracellularenzymesactasendoglucanases(EGs),cellobiohydrolasesorβ-glucosidases.Inthispaper,wedescribemolecularscreeningforEGsfromtheGHfamily12.Usingthreehomologoussequenceboxesdeducedfromfivepreviouslyknownmembersofthefamily,weanalysed22cellulase-producingfungalstrainsobtainedfromadiverseareaofthefungalkingdom.Polymerasechainreactionsusingdegenerateprimersdesignedtothehomologousproteinboxeswereusedtoidentifythefamily12homologues.Severalfungishowedthepresenceofmultipleversionsofthegene,whileaminoacidsequenceanalysisshoweddiversityin15novelmembersofthefamily,rangingfrom26%to96%similarity.Oursequenceanalysisshowsthatthephylogenetictreeoffamily12EGscanbedividedintofoursubfamilies:12-1(fungalgroupI),12-2(fungalgroupII),12-3(
Streptomycesgroupinwhich
Rhodothermusmarinusfits)and12-4(
Thermophilesgroup).
Erwiniacarotovoramayformanewsubgroup.
Digestiveenzymespectraincrustaceandecapods(Paleomonidae,PortunidaeandPenaeidae)feedinginthenaturalhabitat.
Figueiredo,M.S.R.B.&Anderson,A.J.(2009).AquacultureResearch,40(3),282-291.
LinktoArticle
ReadAbstract
ThisworkdescribestheprofileoffiveproteasesandfourcarbohydrasesfromthecrustaceandecapodsMacrobrachiumaustraliense(Holthuis),Scyllaserrata(Forskal),Portunuspelagicus(Linnaeus),Penaeusesculentus,Penaeusplebejus(Hess)andMetapenaeusbennettae(Racck&Dall),feedinginthenaturalhabitat,inordertoprovideanindicationoftheirdigestivecapabilities.Theresultsraisedthefollowingpoints.First,speciesfromeachfamilyshowedaparticularsuiteofdigestiveenzymes.Second,theactivityofcellulasefromM.australiensisandS.serrata,usingAZCL-HEcelluloseasthesubstrate,wasaround90%higherthanthatobservedwithAZO-CMcellulose.However,forP.pelagicusandP.esculentus,theenzymeactivitywasbetterwithAZO-CMcellulose.Third,M.australiensedisplayedthehighestratioofamylasetoproteaseactivity.Incontrast,Portunidaespecies,P.pelagicusandS.serratashowedthelowestratios.Fourth,comparisonofthelaminarinaseactivityofM.bennettaeandP.esculentusinOctober(Spring)andDecember(earlySummer)showedasignificantdecreaseinDecember.Finally,thewidedistributionofdigestiveenzymesinthesecrustaceansmayreflectdifferentfeedinghabitsandhabitats.
Rationallyselectedsingle‐sitemutantsoftheThermoascusaurantiacusendoglucanaseincreasehydrolyticactivityoncellulosicsubstrates.
Srikrishnan,S.,Randall,A.,Baldi,P.&DaSilva,N.A.(2012).BiotechnologyandBioengineering,109(6),1595-1599.
LinktoArticle
ReadAbstract
VariantsoftheThermoascusaurantiacusEg1enzymewithhighercatalyticefficiencythanwild-typewereobtainedviasite-directedmutagenesis.Usingarationalmutagenesisapproachbasedonstructuralbioinformaticsandevolutionaryanalysis,twopositions(F16SandY95F)wereidentifiedasprioritysitesformutagenesis.ThemutantandparentenzymeswereexpressedandsecretedfromPichiapastorisandthesinglesitemutantsF16SandY95Fshowed1.7-and4.0-foldincreasesinKcatand1.5-and2.5-foldimprovementsinhydrolyticactivityoncellulosicsubstrates,respectively,whilemaintainingthermostability.Similartotheparentenzyme,thetwovariantswereactivebetweenpH4.0and8.0andshowedoptimalactivityattemperature70°CatpH5.0.Thepurifiedenzymeswereactiveat50°Cforover12 handretainedatleast80%ofinitialactivityfor2 hat70°C.Incontrasttotheimprovedhydrolysisseenwiththesinglemutationenzymes,noimprovementwasobservedwithathirdvariantcarryingacombinationofbothmutations,whichinsteadshoweda60%reductionincatalyticefficiency.Thisworkfurtherdemonstratesthatnon-catalyticaminoacidresiduescanbeengineeredtoenhancecatalyticefficiencyinpretreatmentenzymesofinterest.
Acomparativestudyofcellulaseandxylanaseactivityinfreshwatercrayfishandmarineprawns.
Crawford,A.C.,Richardson,N.R.&Mather,P.B.(2005).AquacultureResearch,36(6),586-592.
LinktoArticle
ReadAbstract
Cellulaseandxylanasedigestiveenzymeactivitieswerecomparedinfourfreshwatercrayfish(GenusCherax)andthreemarineprawn(GenusPenaeus)species.TemperatureandpHprofilesforcellulase(endoglucanase)werefoundtobeverysimilarinallspecies,withmaximumactivityoccurringat60°CandpH5.0.TemperatureandpHprofilesforxylanase(endoxylanase)werealsoverysimilarinallcrayfishspecies,withmaximumactivityoccurringat50°CandpH5.0.Xylanaseactivitywasnotdetectedinthethreeprawnspeciesexamined.Inaddition,invitrostudiesshowedthatmostspecieswereabletoliberateglucosefromcarboxymethylcellulose,indicatingthatcellulosesubstratescanbeasourceofenergyforbothcrayfishandprawnspecies.
Exo‐exosynergybetweenCel6AandCel7AfromHypocreajecorina:Roleofcarbohydratebindingmoduleandtheendo‐lyticcharacteroftheenzymes.
Badino,S.F.,Christensen,S.J.,Kari,J.,Windahl,M.S.,Hvidt,S.,Borch,K.&Westh,P.(2017).BiotechnologyandBioengineering,9999:1–9.
LinktoArticle
ReadAbstract
Synergybetweencellulolyticenzymesisessentialinbothnaturalandindustrialbreakdownofbiomass.Inadditiontosynergybetweenendo-andexo-lyticenzymes,alesserknownbutequallyconspicuoussynergyoccursamongexo-acting,processivecellobiohydrolases(CBHs)suchasCel7AandCel6AfromHypocreajecorina.Westudiedthissystemusingmicrocrystallinecelluloseassubstrateandfoundadegreeofsynergybetween1.3and2.2dependingontheexperimentalconditions.Synergybetweenenzymevariantswithoutthecarbohydratebindingmodule(CBM)anditslinkerwasstronglyreducedcomparedtothewildtypes.Oneplausibleinterpretationofthisisthatexo-exosynergydependsonthetargetingroleoftheCBM.Manyearlierworkshaveproposedthatexo-exosynergywascausedbyanauxiliaryendo-lyticactivityofCel6A.However,biochemicaldatafromdifferentassayssuggestedthattheendo-lyticactivityofbothCel6AandCel7Awere103–104timeslowerthanthecommonendoglucanase,Cel7B,fromthesameorganism.Moreover,theendo-lyticactivityofCel7Awas2–3-foldhigherthanforCel6A,andwesuggestthatendo-likeactivityofCel6Acannotbethemaincausefortheobservedsynergy.Rather,wesuggesttheexo-exosynergyfoundheredependsondifferentspecificitiesoftheenzymespossiblygovernedbytheirCBMs.
Aspergillushancockiisp.nov.,abiosyntheticallytalentedfungusendemictosoutheasternAustraliansoils.
Pitt,J.I.,Lange,L.,Lacey,A.E.,Vuong,D.,Midgley,D.J.,Greenfield,P.,Bradbury,M.I.,Lacey,E.,Busk,P.K.,Pilgaard,B.,Chooi,Y.H.&Piggott,A.M.(2017).PloSOne,12(4),e0170254.
LinktoArticle
ReadAbstract
Aspergillushancockiisp.nov.,classifiedinAspergillussubgenusCircumdatisectionFlavi,wasoriginallyisolatedfromsoilinpeanutfieldsnearKumbia,intheSouthBurnettregionofsoutheastQueensland,Australia,andhassincebeenfoundoccasionallyfromothersubstratesandlocationsinsoutheastAustralia.ItisphylogeneticallyandphenotypicallyrelatedmostcloselytoA. leporisStatesandM.Chr.,butdiffersinconidialcolour,otherminorfeaturesandparticularlyinmetaboliteprofile.Whencultivatedonriceasanoptimalsubstrate,A. hancockiiproducedanextensivearrayof69secondarymetabolites.Elevenofthe15mostabundantsecondarymetabolites,constituting90%ofthetotalareaunderthecurveoftheHPLCtraceofthecrudeextract,werenovel.ThegenomeofA. hancockii,approximately40Mbp,wassequencedandminedforgenesencodingcarbohydratedegradingenzymesidentifiedthepresenceofmorethan370genesin114geneclusters,demonstratingthatA. hancockiihasthecapacitytodegradecellulose,hemicellulose,lignin,pectin,starch,chitin,cutinandfructanasnutrientsources.LikemostAspergillusspecies,A. hancockiiexhibitedadiversesecondarymetabolitegeneprofile,encoding26polyketidesynthase,16nonribosomalpeptidesynthaseand15nonribosomalpeptidesynthase-likeenzymes.
MetatranscriptomicsRevealstheFunctionsandEnzymeProfilesoftheMicrobialCommunityinChineseNong-FlavorLiquorStarter.
Huang,Y.,Yi,Z.,Jin,Y.,Huang,M.,He,K.,Liu,D.,Luo,H.,Zhao,D.,He,H.,Fang,Y.&Zhao,H.(2017).FrontiersinMicrobiology,8,1747.
LinktoArticle
ReadAbstract
Chineseliquorisoneoftheworld"sbest-knowndistilledspiritsandisthelargestspiritcategorybysales.Theuniqueandtraditionalsolid-statefermentationtechnologyusedtoproduceChineseliquorhasbeenincontinuoususeforseveralthousandyears.Thediverseanddynamicmicrobialcommunityinaliquorstarteristhemaincontributortoliquorbrewing.However,littleisknownabouttheecologicaldistributionandfunctionalimportanceofthesecommunitymembers.Inthisstudy,metatranscriptomicswasusedtocomprehensivelyexploretheactivemicrobialcommunitymembersandkeytranscriptswithsignificantfunctionsintheliquorstarterproductionprocess.Fungiwerefoundtobethemostabundantandactivecommunitymembers.Atotalof932carbohydrate-activeenzymes,includinghighlyexpressedauxiliaryactivityfamily9and10proteins,wereidentifiedat62°Cunderaerobicconditions.Somepotentialthermostableenzymeswereidentifiedat50,62,and25°C(maturestage).Increasedcontentandoverexpressedkeyenzymesinvolvedinglycolysisandstarch,pyruvateandethanolmetabolismweredetectedat50and62°C.Thekeyenzymesofthecitratecyclewereup-regulatedat62°C,andtheirabundantderivativesarecrucialforflavorgeneration.Here,themetabolismandfunctionalenzymesoftheactivemicrobialcommunitiesinNFliquorstarterwerestudied,whichcouldpavethewaytoinitiateimprovementsinliquorqualityandtodiscovermicrobesthatproducenovelenzymesorhigh-valueaddedproducts.
Megazyme特约代理
点击浏览大图收藏此产品
公司名称:
产品资料:
更新时间:
所 在 地:
生产地址:
浏览次数:
苏州蚂蚁淘生物科技有限公司
查看pdf文档
2015-11-20 15:22:24
上海市
1253
【简单介绍】
Megazyme代理,Megazyme上海代理,Megazyme北京代理,Megazyme总代理,Megazyme一级代理,Megazyme特约代理
苏州蚂蚁淘生物科技有限公司Megazyme专业代理,具体产品信息欢迎电询:4006551678
【详细说明】
世界*实验材料供应商Megazyme正式授权上海起发为其中国代理,Megazyme 在一直是行业的标杆,一直为广大科研客户提供zui为优质的产品和服务,上海起发一直秉承为中国科研客户带来的产品,的服务, 签约Megazyme 就是为了给广大科研客户带来更加完善的产品和服务,您的满意将是我们zui大的收获
Megazyme 中国代理,Megazyme 上海代理,Megazyme北京代理,Megazyme 广东代理,Megazyme 江苏代理 Megazyme 湖北代理, Megazyme 天津, Megazyme 黑龙江代理, Megazyme内蒙古代理, Megazyme 吉林代理, Megazyme 福建代理, Megazyme 江苏代理, Megazyme 浙江代理, Megazyme 四川代理,
爱尔兰Megazyme,Megazyme
爱尔兰Megazyme是一家全球的制造和供应高品质和创新的检测谷物,食品,饲料,发酵,乳制品和葡萄酒行业的技术。Megazyme成立于1988年,该公司目前提供了超过70种诊断试剂盒和超过300种其他试剂和底物
http://www.megazyme.com/