TheD-Xylosetestkitisanovelmethodforthespecific,convenientandrapidmeasurementandanalysisofD-xyloseinplantextracts,culturemedia/supernatantsandothermaterials.
TheinfluenceofAspergillusnigertranscriptionfactorsAraRandXlnRinthegeneexpressionduringgrowthinD-xylose,L-arABInoseandsteam-explodedsugarcanebagasse.
deSouza,W.R.,Maitan-Alfenas,G.P.,deGouvêa,P.F.,Brown,N.A.,Savoldi,M.,Battaglia,E.,Goldman,M.H.S.,deVries,R.P.&Goldman,G.H.(2013).
FungalGeneticsandBIOLOGy,60,29-45.
LinktoArticle
ReadAbstract
Theinterestintheconversionofplantbiomasstorenewablefuelssuchasbioethanolhasledtoanincreasedinvestigationintotheprocessesregulatingbiomasssaccharification.Thefilamentousfungus
Aspergillusnigerisanimportantmicroorganismcapableofproducingawidevarietyofplantbiomassdegr
ADIngenzymes.In
A.nigerthetranscriptionalactivatorXlnRanditsclosehomolog,AraR,controlsthemain(hemi-)cellulolyticsystemrespons
IBLeforplantpolysaccharidedegradation.Sugarcaneisusedworldwideasafeedstockforsugarandethanolproduction,whilethelignocellulosicresidualbagassecanbeusedindifferentindustrialapplications,includingethanolproduction.Theuseofpentosesugarsfromhemicellulosesrepresentsanopportunitytofurtherincreaseproductionefficiencies.Inthepresentstudy,wedescribeaglobalgeneexpressionanalysisof
A.nigerXlnR-andAraR-deficientmutantstrains,grownonaD-xylose/L-arabinosemonosaccharidemixtureandsteam-explodedsugarcanebagasse.DifferentgenesetsofCAZyenzymesandsugartransporterswereshowntobeindividuallyorduallyregulatedbyXlnRandAraR,withXlnRappearingtobethemajorregulatoroncomplexpolysaccharides.Ourstudycontributestounderstandingofthecomplexregulatorymechanismsresponsibleforplantpolysaccharide-degradinggeneexpression,andopensnewpossibilitiesfortheengineeringoffungiabletoproducemoreefficientenzymaticcocktailstobeusedinbiofuelproduction.
Ahigh-throughputplatformforscreeningmilligramquantitiesofplantbiomassforlignocellulosedigestibility.
Santoro,N.,Cantu,S.L.,Tornqvist,C.E.,Falbel,T.G.,Bolivar,J.L.,Patterson,S.E.,Pauly,M.&Walton,J.D.(2010).BioEnergyresearch,3(1),93-102.
LinktoArticle
ReadAbstract
Thedevelopmentofaviablelignocellulosicethanolindustryrequiresmultipleimprovementsintheprocessofconvertingbiomasstoethanol.Akeystepistheimprovementoftheplantsthataretobeusedasbiomassfeedstocks.Tofacilitatetheidentificationandevaluationoffeedstockplants,itwouldbeusefultohaveamethodtoscreenlargenumbersofindividualplantsforenhanceddigestibilityinresponsetocombinationsofspecificpretreatmentsandenzymes.Thispaperdescribesahigh-throughputdigestibilityplatform(HTDP)forscreeningcollectionsofgermplasmforimproveddigestibility,whichwasdevelopedunderthea
USPicesoftheDepartmentofEnergy-GreatLakesBioenergyResearchCenter(DOE-GLBRC).Akeycomponentofthisplatformisacustom-designedworkstationthatcangrindanddispense1–5mgquantitiesofmorethan250differentplanttissuesamplesin16h.Theotherstepsintheprocessing(pretreatment,enzymedigestion,andsugaranalysis)havealsobeenlargelyautomatedandrequire36h.Theprocessisadaptabletodiverseacidicandbasic,low-temperaturepretreatments.TotalthroughputoftheHTDPis972independentbiomasssamplesperweek.Validationoftheplatformwasperformedon
brownmidribmutantsofmaize,whichareknowntohaveenhanceddigestibility.Additionalvalidationwasperformedbyscreeningapproximately1,200
ArabidopsismutantlineswithT-DNAinsertionsingenesknownorsuspectedtobeinvolvedincellwallbiosynthesis.Severallinesshowedhighlysignificant(
p < 0.01)increases=""in=""glucose=""and=""xylose=""release=""(20–40%=""above=""the=""mean).=""the=""platform=""should=""be=""useful=""for=""screening=""populations=""of=""plants=""to=""identify=""superior=""germplasm=""for=""lignocellulosic=""ethanol=""applications=""and=""also=""for=""screening=""populations=""of=""mutant=""model=""plants=""to=""identify=""specific=""genes=""affecting=""digestibility.=""> 0.01)>
Fastenzymaticsaccharificationofswitchgrassafterpretreatmentwithionicliquids.
Zhao,H.,Baker,G.A.&Cowins,J.V.(2010).Biotechnologyprogress,26(1),127-133.
LinktoArticle
ReadAbstract
Thepretreatmentofcelluloseusingionicliquids(ILs)hasbeenshowntobeaneffectivemethodforimprovingtheenzymatichydrolysisofcellulose;thistechniqueaffordsafastandcompletesaccharificationofcelluloseintoreducingsugars(Dadietal.,BiotechnolBioeng.2006;95:904–910;LiuandChen,ChineseSciBull.2006;51:2432–2436;Zhaoetal.,JBiotechnol.2009;139:47–54).Motivatedbytheseadvances,thisstudyexaminestheeffectofIL-pretreatmentontheenzymatichydrolysisofpurifiedxylan(asamodelsystemofhemicellulose)andswitchgrass(asareallignocellulose).TheIL-pretreatmentresultedinnoimprovementinthehydrolysisofxylan.Thelikelyreasonisthatpurexylanhasalowdegreeofpolymerization(DP),andisreadilybiodegradedevenwithoutanypretreatment.However,inrealcellulosicmaterials(suchasswitchgrass),xylanisentrappedwithinthecellulosicmatrix,andcannotbeconvenientlyaccessedbyenzymes.OurdatademonstratethattheIL-pretreatmentofswitchgrasssignificantlyimprovedtheenzymaticsaccharificationofbothcellulose(96%D-glucoseyieldin24h)andxylan(63%D-xyloseyieldin24h).ThecompositionalanalysisofswitchgrasssuggestsalowerlignincontentafterIL-pretreatment.Inaddition,theinfraredspectrumofregeneratedswitchgrassindicatesalowersubstratecrystallinity,whereastheenzymeadsorptionisothermfurtherimpliesthattheregeneratedsubstrateismoreaccessibletoenzymes.ThisstudyhasfurtherconfirmedthatIL-pretreatmentisaneffectivetoolinenhancingtheenzymatichydrolysisofcellulosicbiomass,andallowingamorecompletesaccharification.
SwitchingClostridiumacetobutylicumtoanethanolproducerbydisruptionofthebutyrate/butanolfermentativepathway.
Lehmann,D.&Lütke-Eversloh,T.(2011).MetabolicEngineering,13(5),464-473.
LinktoArticle
ReadAbstract
Solventogenicclostridiaarewell-knownsincealmostacenturyduetotheiruniquecapabilitytobiosynthesizethesolventsacetoneandbutanol.Basedonrecentlydevelopedgeneticengineeringtools,atargeted3-hydroxybutyryl-CoAdehydrogenase(H
BD)-negativemutantof
Clostridiumacetobutylicumwasgenerated.Interestingly,theentirebutyrate/butanol(C
4)metabolicpathwayof
C.acetobutylicumcouldbeinactivatedwithoutaseveregrowthlimitationandindicatedthegeneralfeasibilitytomanipulatethecentralfermentativemetabolismforproductpatternalteration.Cellextractsofthemutant
C.acetobutylicumhbd::int(69)revealedclearlyreducedthiolase,HbdandcrotonasebutincreasedNADH-dependentalcoholdehydrogenaseenzymeactivitiesascomparedtothewildtypestrain.Neitherbutyratenorbutanolweredetectedinculturesof
C.acetobutylicumhbd::int(69),andtheformationofmolecularhydrogenwassignificantlyreduced.Insteadupto16and20g/lethanolwereproducedinglucoseandxylosebatchcultures,respectively.Furthersugaradditioninglucosefed-batchfermentationsincreasedtheethanolproductiontoafinaltiterof33g/l,resultinginanethanoltoglucoseyieldof0.38g/g.
Processcharacterizationandinfluenceofalternativecarbonsourcesandcarbon-to-nitrogenratioonorganicacidproductionbyAspergillusoryzaeDSM1863.
Ochsenreither,K.,Fischer,C.,Neumann,A.&Syldatk,C.(2014).AppliedMicrobiologyandBiotechnology,98(12),5449-5460.
LinktoArticle
ReadAbstract
L-MalicacidandfumaricacidareC4dicarboxylicorganicacidsandconsideredaspromisingchemicalbuildingblocks.Theycanbeappliedasfoodpreservativesandacidulantsinrustremovalandaspolymerizationstarterunits.MoldsofthegenusAspergillusareabletoproducemalicacidinlargequantitiesfromglucoseandothercarbonsources.InordertoenhancetheproductionpotentialofAspergillusoryzaeDSM1863,productionandconsumptionratesinanestablishedbioreactorbatch-processbasedonglucoseweredetermined.At35°C,upto42g/Lmalicacidwasproducedina168-hbatchprocesswithfumaricacidasaby-product.Inprolongedshakingflaskexperiments(353h),thesuitabilityofthealternativecarbonsourcesxyloseandglycerolatacarbon-to-nitrogen(C/N)ratioof200:1andtheinfluenceofdifferentC/Nratiosinglucosecultivationsweretested.Whenusingglucose,58.2g/Lmalicacidand4.2g/Lfumaricacidwereproduced.Whenapplyingxyloseorglycerol,bothorganicacidsareproducedbuttheformationofmalicaciddecreasedto45.4and39.4g/L,respectively.Whereasthefumaricacidconcentrationwasnotsignificantlyalteredwhencultivatingwithxylose(4.5g/L),itisclearlyenhancedbyusingglycerol(9.3g/L).Whenusingglucoseasacarbonsource,anincreaseordecreaseoftheC/Nratiodidnotinfluencemalicacidproductionbuthadanenormousinfluenceonfumaricacidproduction.ThehighestfumaricacidconcentrationsweredeterminedatthehighestC/Nratio(300:1,8.44g/L)andlowestatthelowestC/Nratio(100:1,0.7g/L).
Characterizationofnewlyisolatedoleaginousyeasts-Cryptococcuspodzolicus,TrichosporonporosumandPichiasegobiensis.
Schulze,I.,Hansen,S.,Großhans,S.,Rudszuck,T.,Ochsenreither,K.,Syldatk,C.&Neumann,A.(2014).AMBExpress,4,24.
LinktoArticle
ReadAbstract
TheyeaststrainsCryptococcuspodzolicus,TrichosporonporosumandPichiasegobiensiswereisolatedfromsoilsamplesandidentifiedasoleaginousyeaststrainsbeneficialfortheestablishmentofmicrobialproductionprocessesforsustainablelipidproductionsuitableforseveralindustrialapplications.WhenculturedinbioreactorswithglucoseasthesolecarbonsourceC.podzolicusyielded31.8%lipidperdrybiomassat20°C,whileT.porosumyielded34.1%at25°CandP.segobiensis24.6%at25°C.Theseamountscorrespondtolipidconcentrationsof17.97g/L,17.02g/Land12.7g/Landvolumetricproductivitiesof0.09g/Lh,0.1g/Lhand0.07g/Lh,respectively.DuringthecultureofC.podzolicus30g/lgluconicacidwasdetectedasby-productintheculturebrothand12g/LgluconicacidinT.porosumculture.Theproductionofgluconicacidwaseliminatedforbothstrainswhenglucosewassubstitutedbyxyloseasthecarbonsource.Usingxyloselipidyieldswere11.1g/Land13.9g/L,correspondingto26.8%and33.4%lipidperdrybiomassandavolumetricproductivityof0.07g/Lhand0.09g/Lh,forC.podzolicusandT.porosumrespectively.Thefattyacidprofileanalysisshowedthatoleicacidwasthemaincomponent(39.6to59.4%)inallthreestrainsandcouldbeapplicableforbiodieselproduction.Palmiticacid(18.4to21.1%)andlinolenicacid(7.5to18.7%)arevaluableforcosmeticapplications.P.segobiensishadaconsiderableamountofpalmitoleicacid(16%content)andmaybesuitableformedicalapplications.
CharacterisationofdietaryfibrecomponentsincerealsandlegumesusedinSerbiandiet.
Dodevska,M.S.,Djordjevic,B.I.,Sobajic,S.S.,Miletic,I.D.,Djordjevic,P.B.&Dimitrijevic-Sreckovic,V.S.(2013).Foodchemistry,141(3),1624-1629.
LinktoArticle
ReadAbstract
ThetypicalSerbiandietischaracterisedbyhighintakeofcerealproductsandalsolegumesareoftenused.Thecontentoftotalfibreaswellascertainfibrefractionswasdeterminedincereals,cerealproducts,andcookedlegumes.Thecontentoftotalfibreincookedcerealsandcerealproductsrangedfrom2.5to20.8g/100g,andincookedlegumesfrom14.0to24.5g/100g(ondrymatterbasis).Distributionofanalysedfibrefractionsandtheirquantitiesdifferedsignificantlydependingonfoodgroups.Fructansandarabinoxylanswerethemostsignificantfibrefractionsinryeflakes,andβ-glucaninoatflakes,celluloseandresistantstarchwerepresentinsignificantamountsinpeasandkidneybeans.Whenthesizeofregularfoodportionswastakenintoconsideration,thebestsourcesoftotaldietaryfibrewerepeasandkidneybeans(morethan11g/serving).Thesamefoodswerethebestsourcesofcellulose(4.98and3.56g/serving)andresistantstarch(3.90and2.83g/serving).Highintakeofarabinoxylansandfructanscouldbeaccomplishedwithcookedwheat(3.20gand1.60g/serving,respectively).Oat(1.39g/serving)andbarleyflakes(1.30g/serving)canberecommendedasthebestsourcesofβ-glucan.
KeyresiduesinsubsiteFplayacriticalroleintheactivityofPseudomonasfluorescenssubspeciescellulosaxylanaseAagainstxylooligosaccharidesbutnotagainsthighlypolymericsubstratessuchasxylan.
Charnock,S.J.,Lakey,J.H.,Virden,R.,Hughes,N.,Sinnott,M.L.,Hazlewood,G.P.,Pickersgill,R.&Gilbert,H.J.(1997).TheJournalofBiologicalChemistry,272(5),2942-2951.
LinktoArticle
ReadAbstract
InapreviousstudycrystalsofPseudomonasfluorescenssubspeciescellulosaxylanaseA(XYLA)containingxylopentaoserevealedthattheterminalnonreducingendglycosidicbondoftheoligosaccharidewasadjacenttothecatalyticresiduesoftheenzyme,suggestingthatthexylanasemayhaveanexo-modeofaction.However,aclusterofconservedresiduesinthesubstratebindingcleftindicatedthepresenceofanadditionalsubsite,designatedsubsiteF.AnalysisofthebiochemicalpropertiesofXYLArevealedthattheenzymewasatypicalendo-β1,4-xylanase,providingsupportfortheexistenceofsubsiteF.Thethree-dimensionalstructureoffourfamily10xylanases,includingXYLA,revealedseveralhighlyconservedresiduesthatareonthesurfaceoftheactivesitecleft.Toinvestigatetheroleofsomeoftheseresidues,appropriatemutationsofXYLAwereconstructed,andthebiochemicalpropertiesofthemutatedenzymeswereevaluated.N182Ahydrolyzedxylotetraosetoapproximatelyequalmolarquantitiesofxylotriose,xylobiose,andxylose,whilenativeXYLAcleavedthesubstratetoprimarilyxylobiose.ThesedatasuggestthatN182islocatedattheCsiteoftheenzyme.N126AandK47Awerelessactiveagainstxylanandaryl-β-glycosidesthannativeXYLA.ThepotentialrolesofAsn-126andLys-47inthefunctionofthecatalyticresiduesarediscussed.E43AandN44A,whicharelocatedintheFsubsiteofXYLA,retainedfullactivityagainstxylanbutweresignificantlylessactivethanthenativeenzymeagainstoligosaccharidessmallerthanxyloseptaose.ThesedatasuggestthattheprimaryroleoftheFsubsiteofXYLAistopreventsmalloligosaccharidesfromformingnonproductiveenzyme-substratecomplexes.
Simultaneousuptakeoflignocellulose‐basedmonosaccharidesbyEscherichiacoli.
Jarmander,J.,Hallström,B.M.&Larsson,G.(2014).BiotechnologyandBioengineering,111(6),1108-1115.
LinktoArticle
ReadAbstract
Lignocellulosicwasteisanaturallyabundantbiomassandisthereforeanattractivematerialtouseinsecondgenerationbiorefineries.Microbialgrowthonthemonosaccharidespresentinhydrolyzedlignocelluloseishoweverassociatedwithseveralobstacleswhereofoneisthelackofsimultaneousuptakeofthesugars.WehavestudiedtheaerobicgrowthofEscherichiacolionD-glucose,D-xylose,andL-arabinoseandforsimultaneousuptaketooccur,boththecarboncataboliterepressionmechanism(CCR)andtheAraCrepressionofxyloseuptakeandmetabolismhadtoberemoved.ThestrainAF1000isaMC4100derivativethatisonlyabletoassimilatearabinoseafteraconsiderablelagphase,whichisunsuitableforcommercialproduction.ThisstrainwassuccessfullyadaptedtogrowthonL-arabinoseandthisledtosimultaneousuptakeofarabinoseandxyloseinadiauxicgrowthmodefollowingglucoseconsumption.Inthisstrain,adeletioninthephosphoenolpyruvate:phosphotransferasesystem(PTS)forglucoseuptake,theptsGmutation,wasintroduced.Theresultingstrain,PPA652arasimultaneouslyconsumedallthreemonosaccharidesatamaximumspecificgrowthrateof0.59 h-1,55%higherthanfortheptsGmutantalone.Also,noresidualsugarwaspresentinthecultivationmedium.ThepotentialofPPA652araisfurtheracknowledgedbytheperformanceofAF1000duringfed-batchprocessingonamixtureofD-glucose,D-xylose,andL-arabinose.Theconclusionisthatwithouttheremovalofbothlayersofcarbonuptakecontrol,thisprocessresultsinaccumulationofpentosesandleadstoareductionofthespecificgrowthrateby30%.
PenicilliumpurpurogenumproducestwoGHfamily43enzymeswithβ-xylosidaseactivity,onemonofunctionalandtheotherbifunctional:Biochemicalandstructuralanalysesexplainthedifference.
Ravanal,M.C.,Alegría-Arcos,M.,Gonzalez-Nilo,F.D.&Eyzaguirre,J.(2013).ArchivesofBiochemistryandBiophysics,540(1-2),117-124.
LinktoArticle
ReadAbstract
β-Xylosidasesparticipateinxylanbiodegradation,liberatingxylosefromthenon-reducingendofxylooligosaccharides.ThefungusPenicilliumpurpurogenumsecretestwoenzymeswithβ-D-xylosidaseactivitybelongingtofamily43oftheglycosylhydrolases.Oneoftheseenzymes,arabinofuranosidase3(ABF3),isabifunctionalα-L-arabinofuranosidase/xylobiohydrolaseactiveonp-nitrophenyl-α-L-arabinofuranoside(pNPAra)andp-nitrophenyl-β-D-xylopyranoside(pNPXyl)withaKMof0.65and12mM,respectively.Theother,β-D-xylosidase1(XYL1),isonlyactiveonpNPXylwithaKMof0.55mM.Thexyl1genewasexpressedinPichiapastoris,purifiedandcharacterized.Thepropertiesofbothenzymeswerecomparedinordertoexplaintheirdifferenceinsubstratespecificity.Structuralmodelsforeachproteinwerebuiltusinghomologymodelingtools.Moleculardockingsimulationswereusedtoanalyzetheinteractionsdefiningtheaffinityoftheproteinstobothligands.Thestructuralanalysisshowsthatactivecomplexes(ABF3–pNPXyl,ABF3–pNPAraandXYL1–pNPXyl)possessspecificinteractionsbetweensubstratesandcatalyticresidues,whichareabsentintheinactivecomplex(XYL1–pNPAra),whileotherinteractionswithnon-catalyticresiduesarefoundinallcomplexes.pNPAraisacompetitiveinhibitorforXYL1(Ki=2.5mM),confirmingthatpNPAradoesbindtotheactivesitebutnottothecatalyticresidues.
Developmentandtestingofanovellab-scaledirectsteam-injectionapparatustohydrolysemodelandsalinecropslurries.
Guglielmo,S.,Dalessandro,A.,Maurizio,P.,Silvia,C.,Maurizio,R.,Riccardo,V.&Moresi,M.(2012).JournalofBiotechnology,157(4),590-597.
LinktoArticle
ReadAbstract
Inthiswork,anovellaboratory-scaledirectsteam-injectionapparatus(DSIA)wasdevelopedtoovercomethemaindrawbackoftheconventionalbatch-drivenlabrigs,namelythelongtimeneededtoheatfiberslurryfromroomtoreactiontemperaturesgreaterthan150°C.Thenovelapparatusmainlyconsistedofthreeunits:(i)amechanically-stirredbioreactorwheresaturatedsteamat5–30barcanbeinjected;(ii)anautomaticon–offvalvetoflashsuddenlythereactionmediumafteraprefixedreactiontime;(iii)acycloneseparatortorecoverthereactedslurry.Thissystemwastestedusing0.75dm3ofanaqueoussolutionofH2SO4(0.5%,v/v)enrichedwith50kgm-3ofeithercommercialparticlesofAvicel®andLarchxylanor0.5mmsievedparticlesofTamarixjordanis.Eachslurrywasheatedtoabout200°Cbyinjectingsteamat28barfor90s.Theprocessefficiencywasassessedbycomparingthedissolutiondegreeofsuspendedsolid(YS),aswellasxylose(YX),glucose(YG),andfurfural(YF)yields,withthoseobtainedinaconventionalsteamautoclaveat130°Cfor30or60min.TreatmentofT.jordanisparticlesinDSIAresultedinYSandYGvaluesquitesimilartothoseobtainedinthesteamautoclaveat130°Cfor60min,butinalessefficienthemicellulosesolubilization.Alimitedoccurrenceofpentosedegradationproductswasobservedinbothequipments,suggestingthathydrolysispredominatedoverdegradationreactions.ThesusceptibilityoftheresidualsolidfractionsfromDSIAtreatmenttoaconventional120hlongcellulolytictreatmentusinganenzymeloadingof5.4FPUg-1wasmarkedlyhigherthanthatofsampleshydrolysedinthesteamautoclave,theircorrespondingglucoseyieldsbeingequalto0.94and0.22gpergramofinitialcellulose,respectively.Thus,T.jordanisresultedtobeavaluablesourceofsugarsforbioethanolproductionasprovedbypreliminarytestsinthenovellabrigdevelopedhere.
SynergisticeffectofAspergillusnigerandTrichodermareeseienzymesetsonthesaccharificationofwheatstrawandsugarcanebagasse.
vandenBrink,J.,Maitan-Alfenas,G.P.,Zou,G.,Wang,C.,Zhou,Z.,Guimarães,V.M.&deVries,R.P.(2014).BiotechnologyJournal,9(10),1329-1338.
Linktoarticle
ReadAbstract
Plant-degradingenzymescanbeproducedbyfungionabundantlyavailablelow-costplantbiomass.However,enzymessetsaftergrowthoncomplexsubstratesneedtobebetterunderstood,especiallywithemphasisondifferencesbetweenfungalspeciesandtheinfluenceofinhibitorycompoundsinplantsubstrates,suchasmonosaccharides.Inthisstudy,AspergillusnigerandTrichodermareeseiwereevaluatedfortheproductionofenzymesetsaftergrowthontwo“secondgeneration”substrates:wheatstraw(WS)andsugarcanebagasse(SCB).A.nigerandT.reeseiproduceddifferentsetsof(hemi-)cellulolyticenzymesaftergrowthonWSandSCB.ThiswasreflectedinanoverallstrongsynergisticeffectinreleasingsugarsduringsaccharificationusingA.nigerandT.reeseienzymesets.T.reeseiproducedlesshydrolyticenzymesaftergrowthonnon-washedSCB.Thesensitivitytonon-washedplantsubstrateswasnotreducedbyusingCreA/Cre1mutantsofT.reeseiandA.nigerwithadefectivecarboncataboliterepression.TheimportanceofremovingmonosaccharidesforproducingenzymeswasfurtherunderlinedbythedecreaseinhydrolyticactivitieswithincreasedglucoseconcentrationsinWSmedia.ThisstudyshowedtheimportanceofremovingmonosaccharidesfromtheenzymeproductionmediaandcombiningT.reeseiandA.nigerenzymesetstoimproveplantbiomasssaccharification.
Co-fermentationofacetateandsugarsfacilitatingmicrobiallipidproductiononacetate-richbiomasshydrolysates.
Gong,Z.,Zhou,W.,Shen,H.,Yang,Z.,Wang,G.,Zuo,Z.,Hou.Y.&Zhao,Z.K.(2016).Bioresourcetechnology,207,102-108.
LinktoArticle
ReadAbstract
Theprocessoflignocellulosicbiomassroutinelyproducesastreamthatcontainssugarsplusvariousamountsofaceticacid.Asacetateisknowntoinhibitthecultureofmicroorganismsincludingoleaginousyeasts,littleattentionhasbeenpaidtoexplorelipidproductiononmixturesofacetateandsugars.HerewedemonstratedthattheyeastCryptococcuscurvatuscaneffectivelyco-fermentacetateandsugarsforlipidproduction.Whenmixturesofacetateandglucosewereapplied,C.curvatusconsumedbothsubstratessimultaneously.Similarphenomenawerealsoobservedforacetateandxylosemixtures,aswellasacetate-richcornstoverhydrolysates.Moreinterestingly,thereplacementofsugarwithequalamountofacetateascarbonsourceaffordedhigherlipidtitreandlipidcontent.Thelipidproductshadfattyacidcompositionalprofilessimilartothoseofcocoabutter,suggestingtheirpotentialforhighvalue-addedfatsandbiodieselproduction.Thisco-fermentationstrategyshouldfacilitatelipidproductiontechnologyfromlignocelluloses.
Effectsofanacid/alkalinetreatmentonthereleaseofantioxidantsandcellulosefromdifferentagro-foodwastes.
Vadivel,V.,Moncalvo,A.,Dordoni,R.&Spigno,G.(2017).WasteManagement,64,305-314.
LinktoArticle
ReadAbstract
Thepresentinvestigationwasaimedtoevaluatethereleaseofbothantioxidantsandcellulosicfibrefromdifferentagro-foodwastes.Cost-effectiveandeasilyavailableagro-foodresidues(brewers’spentgrains,hazelnutshells,orangepeelsandwheatstraw)wereselectedandsubmittedtoadouble-stepacid/alkalinefractionationprocess.Theobtainedacidandalkalineliquorswereanalysedfortotalphenolscontentandantioxidantcapacity.Thefinalfibreresiduewasanalysedforthecellulose,ligninandhemicellulosecontent.Thetotalphenolscontentandantioxidantcapacityoftheacidliquorswerehigherthanthealkalinehydrolysates.Orangepeelsandwheatstrawgave,respectively,thehighest(19.70±0.68mg/gdm)andthelowest(4.70±0.29mg/gdm)totalphenolsrelease.Correlationbetweenantioxidantcapacityoftheliquorsandtheirorigindependedontheanalyticalassayusedtoevaluateit.Alltheacidliquorswerealsorichinsugardegradationproducts(mainlyfurfural).HPLCanalysisrevealedthatthemostabundantphenoliccompoundintheacidliquorswasvanillinforbrewers’spentgrains,hazelnutshellsandwheatstraw,andp-hydroxybenzoicacidfororangepeels.Wheatstrawservedasthebestrawmaterialforcelluloseisolation,providingafinalresiduewithahighcellulosecontent(84%)whichcorrespondedto45%oftheoriginalcellulose.Theappliedprocessremovedmorethan90%ofthehemicellulosefractioninallthesamples,whiledelignificationdegreerangedfrom67%(inhazelnutshells),to93%(inbrewers’spentgrains).Itwasnotpossibletoselectauniquerawmaterialforthereleaseofhighestlevelsofbothtotalphenolsandcellulose.
Megazyme特约代理
点击浏览大图收藏此产品
公司名称:
产品资料:
更新时间:
所 在 地:
生产地址:
浏览次数:
苏州蚂蚁淘生物科技有限公司
查看pdf文档
2015-11-20 15:22:24
上海市
1253
【简单介绍】
Megazyme代理,Megazyme上海代理,Megazyme北京代理,Megazyme总代理,Megazyme一级代理,Megazyme特约代理
苏州蚂蚁淘生物科技有限公司Megazyme专业代理,具体产品信息欢迎电询:4006551678
【详细说明】
世界*实验材料供应商Megazyme正式授权上海起发为其中国代理,Megazyme 在一直是行业的标杆,一直为广大科研客户提供zui为优质的产品和服务,上海起发一直秉承为中国科研客户带来的产品,的服务, 签约Megazyme 就是为了给广大科研客户带来更加完善的产品和服务,您的满意将是我们zui大的收获
Megazyme 中国代理,Megazyme 上海代理,Megazyme北京代理,Megazyme 广东代理,Megazyme 江苏代理 Megazyme 湖北代理, Megazyme 天津, Megazyme 黑龙江代理, Megazyme内蒙古代理, Megazyme 吉林代理, Megazyme 福建代理, Megazyme 江苏代理, Megazyme 浙江代理, Megazyme 四川代理,
爱尔兰Megazyme,Megazyme
爱尔兰Megazyme是一家全球的制造和供应高品质和创新的检测谷物,食品,饲料,发酵,乳制品和葡萄酒行业的技术。Megazyme成立于1988年,该公司目前提供了超过70种诊断试剂盒和超过300种其他试剂和底物
http://www.megazyme.com/