TheResistantStarchTestkitfor themeasurementandanalysisofresistantstarchinplantmaterialsandstarchsamples.
Measurementoftotalstarchincerealproductsbyamyloglucosidase-alpha-amylasemethod:collaborativestudy.
McCleary,B.V.,Gibson,T.S.&Mugford,D.C.(1997).JournalofAOACInternational,80,571-579.
LinktoArticle
ReadAbstract
AnAmericanAssociationofCerealChemists/AOACcollaborativestudywasconductedtoevaluatetheaccuracyandreli
ABIlityofanenzymeassaykitprocedureformeasurementoftotalstarchinarangeofcerealgrainsandproducts.Thefloursampleisincubatedat95degreesCwith
Thermostablealpha-amylasetocatalyzethehydrolysisofstarchtomaltodextrins,thepHoftheslurryisadjusted,andtheslurryistreatedwithahighlypurifiedamyloglucosidasetoquantitativelyhydrolyzethedextrinstoglucose.Glucoseismeasuredwithglucoseoxidase-peroxidasereagent.Thirty-twocollaboratorsweresent16homogeneoustestsamplesas8blindduplicates.Thesesamplesincludedchickenfeedpellets,whitebread,greenpeas,high-amylosemaizestarch,whitewheatflour,wheatstarch,oatbran,andspaghetti.Allsampleswereanalyzedbythestandardprocedureasdetailedabove;4samples(high-amylosemaizestarchandwheatstarch)werealsoanalyzedbyamethodthatrequiresthesamplestobecookedfirstindimethylsulfoxide(DMSO).Relativestandarddeviationsforrepeatability(RSD(r))rangedfrom2.1to3.9%,andrelativestandarddeviationsforreproducibility(RSD(R))rangedfrom2.9to5.7%.TheRSD(R)valueforhighamylosemaizestarchanalyzedbythestandard(non-DMSO)procedurewas5.7%;thevaluewasreducedto2.9%whentheDMSOprocedurewasused,andthedeterminedstarchvaluesincreasedfrom86.9to97.2%.
Twoissuesindietaryfibermeasurement.
McCleary,B.V.(2001).CerealFoodsWorld,46(4),164-165.
LinktoArticle
ReadAbstract
Enzymeactivityandpurityofthesetopics,theeasiesttodealwithistheimportanceofenzymepurityandactivity.Asascientistactivelyinvolvedinpolysaccharideresearchoverthepast25years,Ihavecometoappreciatetheimportanceofenzymepurityandspecificityinpolysaccharidemodificationandmeasurement(7).Thesefactorstranslatedirectlytodietaryfiber(DF)methodology,becausethemajorcomponentsofDFarecarbohydratepolymersandoligomers.ThecommitteereportpublishedintheMarchissueofCerealFOODSWORLDrefersonlytothemethodologyformeasuringenzymepurityandactivity(8)thatleduptheAOACmethod985.29(2).Inthisworkenzymepuritywasgaugedbythelackofhydrolysis(i.e.,completerecovery)ofaparticularDFcomponent(e.g.β-glucan,larchgalactanorcitruspectin).Enzymeactivitywasmeasuredbytheabilitytocompletelyhydrolyzerepresentativestarchandprotein(namelywheatstarchandcasein).Theserequirementsandrestrictionsonenzymepurityandactivitywereadequateatthetimethemethodwasinitiallydevelopedandservedasausefulworkingguide.However,itwasrecognizedthattherewasaneedformorestringentqualitydefinitionsandassayproceduresforenzymesusedinDFmeasurements.
Measurementofresistantstarch.
McCleary,B.V.&Monaghan,D.A.(2002).JournalofAOACInternational,85(3),665-675.
LinktoArticle
ReadAbstract
Arobustandreliablemethodwasdevelopedtomeasureresistantstarch(RS),i.e.,starchthatentersthelargeintestine.Invivoconditionswerereflectedasmuchasposs
IBLewhileauser-friendlyformatwasmaintained.Parametersinvestigatedincludedα-amylaseconcentration,pHofincubation,maltoseinhibitionofα-amylase,theneedforamyloglucosidaseinclusion,theeffectofshakingandstirringondeterminedvalues,andproblemsinrecoveringandanalyzingtheRS-containingpellet.TheRSvaluesobtainedwereingoodagreementwithpublishedinvivodata.Aninterlaboratoryevaluationofthemethodhasbeencompleted(FirstActionMethod2002.02).
Measurementofresistantstarchbyenzymaticdigestioninstarchandselectedplantmaterials:Collaborativestudy.
McCleary,B.V.,McNally,M.&Rossiter,P.(2002).JournalofAOACInternational,85(5),1103-1111.
LinktoArticle
ReadAbstract
Interlaboratoryperformancestatisticswasdeterminedforamethoddevelopedtomeasuretheresistantstarch(RS)contentofselectedplantfoodproductsandarangeofcommercialstarchsamples.FoodmaterialsexaminedcontainedRS(cookedkidneybeans,greenbanana,andcornflakes)andcommercialstarches,mostofwhichnaturallycontain,orwereprocessedtoyield,elevatedRSlevels.ThemethodevaluatedwasoptimizedtoyieldRSvaluesinagreementwiththosereportedforinvivostudies.Thirty-sevenlaboratoriestested8pairsofblindduplicatestarchorplantmaterialsampleswithRSvaluesbetween0.6(regularmaizestarch)and64%(freshweightbasis).Formatrixesexcludingregularmaizestarch,repeatabilityrelativestandarddeviation(RSDr)valuesrangedfrom1.97to4.2%,andreproducibilityrelativestandarddeviation(RSDR)valuesrangedfrom4.58to10.9%.Therangeofapplicabilityofthetestis2-64%RS.Themethodisnotsuitableforproductswith<1% rs="" (e.g.,="" regular="" maize="" starch;="" 0.6%="" rs).="" for="" such="" products,="">1%>randRSDRvaluesareunacceptablyhigh.
Measurementofcarbohydratesingrain,feedandfood.
McCleary,B.V.,Charnock,S.J.,Rossiter,P.C.,O’Shea,M.F.,Power,A.M.&Lloyd,R.M.(2006).JournaloftheScienceofFoodandAgriculture,86(11),1648-1661.
LinktoArticle
ReadAbstract
Proceduresforthemeasurementofstarch,starchdamage(gelatinisedstarch),resistantstarchandtheamylose/amylopectincontentofstarch,β-glucan,fructan,glucomannanandgalactosyl-sucroseoligosaccharides(raffinose,stachyoseandverbascose)inplantmaterial,animalfeedsandfoodsaredescribed.Mostofthesemethodshavebeensuccessfullysubjectedtointerlaboratoryevaluation.Allmethodsarebasedontheuseofenzymeseitherpurifiedbyconventionalchromatographyorproducedusingmolecular
BIOLOGytechniques.Suchmethodsallowspecific,accurateandreliablequantificationofaparticularcomponent.Problemsincalculatingtheactualweightofgalactosyl-sucroseoligosaccharidesintestsamplesarediscussedindetail.
Anintegratedprocedureforthemeasurementoftotaldietaryfibre(includingresistantstarch),non-digestibleoligosaccharidesandavailablecarbohydrates.
McCleary,B.V.(2007).AnalyticalandBioanalyticalChemistry,389(1),291-308.
LinktoArticle
ReadAbstract
Amethodisdescribedforthemeasurementofdietaryfibre,includingresistantstarch(RS),non-digestibleoligosaccharides(NDO)andavailablecarbohydrates.Basically,thesampleisincubatedwithpancreaticα-amylaseandamyloglucosidaseunderconditionsverysimilartothosedescribedinAOACOfficialMethod2002.02(RS).Reactionisterminatedandhighmolecularweightresistantpolysaccharidesareprecipitatedfromsolutionwithalcoholandrecoveredbyfiltration.RecoveryofRS(formostRSsources)isinlinewithpublisheddatafromileostomystudies.Theaqueousethanolextractisconcentrated,desaltedandanalysedforNDObyhigh-performanceliquidchromatographybyamethodsimilartothatdescribedbyOkuma(AOACMethod2001.03),exceptthatforlogisticalreasons,D-sorbitolisusedastheinternalstandardinplaceofglycerol.Availablecarbohydrates,definedasD-glucose,D-fructose,sucrose,theD-glucosecomponentoflactose,maltodextrinsandnon-resistantstarch,aremeasuredasD-glucoseplusD-fructoseinthesampleafterhydrolysisofoligosaccharideswithamixtureofsucrase/maltaseplusβ-galactosidase.
Deficiencyofmaizestarch-branchingenzymeiresultsinalteredstarchfinestructure,decreaseddigestibilityandreducedcoleoptilegrowthduringgermination.
Xia,H.,Yandeau-Nelson,M.,Thompson,D.B.&Guiltinan,M.J.(2011).BMCPlantBiology,11(1),95-107.
LinktoArticle
ReadAbstract
Background:Twodistinctstarchbranchingenzyme(SBE)isoformspredatethedivergenceofmonocotsanddicotsandhavebeenconservedinplantssincethen.ThisstronglysuggeststhatbothSBEIandSBEIIprovideuniqueselectiveadvantagestoplants.However,nophenotypefortheSBEImutation,sbe1a,hadbeenpreviouslyobserved.Toexplorethisincongruitytheobjectiveofthepresentworkwastocharacterizefunctionalandmolecularphenotypesofbothsbe1aandwild-type(Wt)intheW64Amaizeinbredline.Results:Endospermstarchgranulesfromthesbe1amutantweremoreresistanttodigestionbypancreaticα-amylase,andthesbe1amutantstarchhadanalteredbranchingpatternforamylopectinandamylose.Whenkernelsweregerminated,thesbe1amutantwasassociatedwithshortercoleoptilelengthandhigherresidualstarchcontent,suggestingthatlessefficientstarchutilizationmayhaveimpairedgrowthduringgermination.Conclusions:ThepresentreportdocumentsforthefirsttimeamolecularphenotypeduetotheabsenceofSBEI,andsuggestsstronglythatitisassociatedwithalteredphysiologicalfunctionofthestarchinvivo.WebelievethattheseresultsprovideaplausiblerationalefortheconservationofSBEIinplantsinbothmonocotsanddicots,asgreaterseedlingvigorwouldprovideanimportantsurvivaladvantagewhenresourcesarelimited.
ImprovementoftheAOAC2009.01totaldietaryfibremethodforbreadandotherhighstarchcontainingmatrices.
Brunt,K.&Sanders,P.(2013).FoodChemistry,140(3),574-580.
LinktoArticle
ReadAbstract
Thedietaryfibre(DF)contentinwheatgrainbasedfoodproductshavebeenestablishedwithboththeclassicalAOAC985.29dietaryfibreandthenewAOAC2009.01totaldietaryfibreprotocol.Thereisagoodagreementbetweenthehighmolecularweightdietaryfibre(HMWDF)contentsmeasuredwiththeAOAC2009.01methodand(DF)contentmeasuredwiththeclassicalAOAC985.29methodinwheatgrainbasedfoodproducts.WiththeAOAC2009.01methodalsoasignificantamountoflowmolarweightdietaryfibre(LMWDF),rangingfrom1%to3%w/w,wasmeasuredwhichisnotquantifiedwiththeAOAC985.29method.Withsemi-preparativeGPCtheLMWDF(DP≥3)fractionsinthewheatgrainbasedfoodproductswereisolated.ThemonosaccharidecompositionofthedissolvedLMWDFconstituentswasdetermined.Glucosewasbyfarthemostabundantmonosaccharidepresentwitharabinose,galactose,xyloseandmannoseasminorconstituents.ItappearedthattheLMWDFcontainsstillnotfullyconverteddigestiblestarch/malto-oligosaccharidefragmentswithDP≥3,whichareerroneouslyquantifiedasLMWDF.ByintroducinganextraAMGhydrolysisstepintheAOAC2009.01protocolafterevaporationoftheethanolanddissolvingtheresidueindeionisedwater,thesemalto-oligosaccharidesarefullyhydrolysedresultinginthatwayinacorrectandlowerLMWDFcontent.
Sterilizationinaliquidofaspecificstarchmakesitslowlydigestibleinvitroandlowglycemicinrats.
Severijnen,C.,Abrahamse,E.,VanderBeek,E.M.,Buco,A.,vandeHeijning,B.J.M.,vanLaere,K.&Bouritius,H.(2007).TheJournalofNutrition,137(10),2202-2207.
LinktoArticle
ReadAbstract
Diabeticsarerecommendedtoeatabalanceddietcontainingnormalamountsofcarbohydrates,preferablythosewithalowglycemicindex.Forsolidfoods,thiscanbeachievedbychoosingwhole-grain,fiber-richproducts.For(sterilized)liquidproducts,suchasmealreplacers,thechoicesforcarbohydratesourcesarerestrictedduetotechnologicallimitations.Starchesusuallyhaveahighglycemicindexaftersterilizationinliquids,whereaslowglycemicsugarsandsugarreplacerscanonlybeusedinlimitedamounts.Usinganinvitrodigestionassay,weidentifiedaresistantstarch(RS)source[modifiedhighamylosestarch(mHAS)]thatmightenabletheproductionofasterilizedliquidproductwithalowglycemicindex.HeatingmHASfor4–5mininliquidincreasedtheslowlydigestiblestarch(SDS)fractionattheexpenseoftheRSportion.Theeffectwastemperaturedependentandreacheditsmaximumabove120°C.Heatingat130°CsignificantlyreducedtheRSfractionfrom49to22%.Theproductremainedstableforatleastseveralmonthswhenstoredat4°C.ToinvestigatewhetherahigherSDSfractionwouldresultinalowerpostprandialglycemicresponse,thesterilizedmHASsolutionwascomparedwithrapidlydigestiblemaltodextrin.MaleWistarratsreceivedani.g.bolusof2.0gavailablecarbohydrate/kgbodyweight.Ingestionofheat-treatedmHASresultedinasignificantattenuationofthepostprandialplasmaglucoseandinsulinresponsescomparedwithmaltodextrin.mHASappearstobeastarchsourcewhich,aftersterilizationinaliquidproduct,acquiresslow-releaseproperties.Thelong-termstabilityofmHASsolutionsindicatesthatthismayprovideasuitablecarbohydratesourceforlowglycemicindexliquidproductsforinclusioninadiabetes-specificdiet.
Effectsofwheatinclusionandxylanasesupplementationofthedietonproductiveperformance,nutrientretention,andendogenousintestinalenzymeactivityoflayinghens.
Mirzaie,S.,Zaghari,M.,Aminzadeh,S.,Shivazad,M.&Mateos,G.G.(2012).PoultryScience,91(2),413-425.
LinktoArticle
ReadAbstract
Anexperimentwasconductedtostudytheeffectsofinclusionofawheatcultivar(highinnonstarchpolysaccharides)andxylanasesupplementationofthedietonproductiveperformance,pHofthegastrointestinaltract,nutrientretention,andintestinalenzymeactivityofHy-LineW-36layinghensfrom25to47wkofage.Theexperimentwascompletelyrandomizedwith8treatmentsarrangedfactoriallywith4levelsofwheat(0,23,46,and69%)thatcorrespondedtoadietaryarabinoxylancontentof3.0,3.3,3.6,and3.9%,withorwithoutxylanasesupplementation.Eachtreatmentwasreplicated5times.Fortheentireexperimentalperiod,eggweight(P<0.05)=""and=""egg=""mass="">P<0.01)=""were=""reduced=""and=""the=""feed=""conversion=""ratio=""was=""hindered="">P<0.05)=""with=""increased=""levels=""of=""wheat=""in=""the=""diet,=""but=""adfi=""and=""egg=""production=""were=""not=""affected.=""xylanase=""supplementation=""improved=""egg=""production="">P<0.05),=""egg=""mass="">P<0.01),=""and=""the=""feed=""conversion=""ratio="">P<0.01).=""diet=""did=""not=""affect=""egg=""quality=""at=""any=""age,=""except=""for=""shell=""thickness=""at=""47=""wk=""that=""was=""improved=""with=""xylanase=""supplementation="">P<0.05).=""digesta=""ph=""of=""the=""different=""organs=""of=""the=""gastrointestinal=""tract=""was=""not=""affected=""by=""wheat=""inclusion=""or=""xylanase=""supplementation.=""ileal=""viscosity=""increased="">P<0.001)=""with=""wheat=""inclusion=""and=""decreased="">P<0.001)=""with=""xylanase=""supplementation=""at=""all=""ages.=""fat=""digestibility="">P<0.001)=""decreased=""with=""increased=""levels=""of=""wheat=""but="">ncontentofthediets(P<0.05)=""and=""nitrogen=""retention=""were=""not=""affected.=""wheat=""inclusion=""increased="">P<0.001)=""amylase=""(33=""wk),=""lipase=""(33=""wk),=""and=""aminopeptidase=""(47=""wk)=""activity=""in=""the=""duodenum=""as=""well=""as=""lipase=""activity=""in=""the=""jejunum=""at=""47=""wk=""of=""age.=""however,=""xylanase=""supplementation=""did=""not=""affect=""the=""activity=""of=""any=""of=""the=""enzymes=""studied.=""it=""is=""concluded=""that=""most=""of=""the=""negative=""effects=""of=""wheat=""inclusion=""in=""the=""diet=""were=""reduced=""or=""even=""disappeared=""with=""xylanase=""supplementation.=""wheat=""with=""a=""high=""nonstarch=""polysaccharide=""content=""(pishtaz=""cultivar)=""can=""be=""used=""at=""levels=""of=""up=""to=""69%=""in=""laying-hen=""diets=""without=""negatively=""affecting=""bird=""performance,=""provided=""that=""feeds=""are=""supplemented=""with=""xylanase.="">
Exoticcornlineswithincreasedresistantstarchandimpactonstarchthermalcharacteristics.
Rohlfing,K.A.,Pollak,L.M.&White,P.J.(2010).CerealChemistry,87(3),190-193.
LinktoArticle
ReadAbstract
Tenparentcornlines,includingfourmutants(
dullsugary2,
amylose-extendersugary2,
amylose-extenderdull,andan
amylose-extenderwithintrogressedGuatemalengermplasm[GUAT
ae])andsixlineswithintrogressedexoticgermplasmbackgrounds,werecrossedwitheachothertocreate20
Progenycrossestoincreaseresistantstarch(RS)asadietaryfiberincornstarchandtoprovidematerialsforthermalevaluation.Theresistantstarch2(RS2)valuesfromthe10parentlineswere18.3–52.2%andthevaluesfromthe20progenycrosseswere16.6–34.0%.The%RS2ofparentswasnotadditiveintheoffspringbutgreaterRS2inparentswascorrelatedtogreaterRS2intheprogenycrosses(
r=0.63).Differentialscanningcalorimetry(DSC)measuredstarchthermalcharacteristics,revealingpositivecorrelationsofpeakgelatinizationtemperatureandchangeinenthalpywith%RS2(
r=0.65and
r=0.67,
P≤0.05);however,%retrogradation(ameasureofRS3)andretrogradationparametersdidnotcorrelatewith%RS2.The%RS2andonsettemperatureincreasedwiththeadditionofthe
aegene,likelybecauseRSdelaysgelatinization.
Effectofextrusionconditionsonresistantstarchformationfrompastrywheatflour.
Kim,J.H.,Tanhehco,E.J.&Ng,P.K.W.(2006).FoodChemistry,99(4),718-723.
LinktoArticle
ReadAbstract
Pastrywheatflourwasextrudedundervariousconditionsoffeedmoisture(20%,40%,and60%)andscrewspeed(150,200,and250rpm),atconstantbarreltemperatureprofile(40,60,80,100,and120°C,feedporttoexitdie).Theextrudedsampleswerestoredat4°Cfor0,7,or14days,atwhichtimesresistantstarch(RS)formationwasanalyzed.Thermalandpastingpropertiesofextrudedsamplesstoredfor14dayswereanalyzedusingadifferentialscanningcalorimeterandrapidviscoanalyzer(RVA),respectively.TheRScontentincreasedafterextrusioncomparedtonon-extrudedpastrywheatflour.Highsignificantpositivecorrelationsoffeedmoisture(P<0.01)=""and=""storage=""period="">P<0.05)=""with=""rs=""formation=""were=""observed.=""the=""rs=""derived=""from=""extrusion=""and=""storage=""showed=""higher=""thermal=""stability=""with=""decreasing=""feed=""moisture=""and=""screw=""speed.=""statistically=""significant=""differences=""in=""pasting=""properties=""were=""observed=""with=""feed=""moisture=""or=""screw=""speed.=""in=""particular,=""the=""setback=""value=""from=""rva=""of=""the=""sample=""was=""significantly=""increased=""with=""increasing=""feed=""moisture.=""these=""results=""indicate=""that=""feed=""moisture=""and=""storage=""time=""were=""both=""important=""factors=""for=""the=""formation=""of=""rs=""from=""pastry=""wheat=""flour=""during=""extrusion.="">
ResistantstarchandstarchpastingpropertiesofastarchsynthaseIIa-deficientwheatwithapparenthighamylose.
Yamamori,M.,Kato,M.,Yui,M.&Kawasaki,M.(2006).AustralianJournalofAgriculturalResearch,57(5),531-535.
LinktoArticle
ReadAbstract
Thebreadwheat(TriticumaestivumL.)analysedinthisstudyhasbeenproducedbygeneticallyeliminatingthestarchsynthaseIIaandshowsapparenthighamylose(HA)intheflourstarch.SomestarchpropertiesoftheHAwheatwereanalysed.TheHAwheatcontained2.8–3.6%resistantstarch(RS),muchmorethanthenormal(control)wheat,whichcontainedalmostnoRS.AutoclavingtheHAandnormalwheatstarchesincreasedRS.Theformercontained10.5%RSandthelatter5.9or6.8%RS.SwellingoftheHAwheatstarchanditspastingpropertiesusingRapidViscoAnalyzer(RVA)wereinvestigated.Swellingpower(g/g)oftheHAwheatin0.1%AgNO3andswellingvolume(mL/g)inureasolutionweresignificantlylessthanthoseofthenormalwheat.TheRVAprofileoftheHAwholemealandstarchalsodifferedfromthenormal.Thepeakviscosity,minimumviscosity,andfinalviscosityofHAwerelow,andbreakdown(peakminusminimumviscosity)wasverysmall.ThesefindingsshowthatamountofresistantstarchandpastingpropertiesareuniqueintheHAwheatstarch,probablycausedbylackofstarchsynthaseIIa.
Effectsofprocessvariablesandadditionofpolydextroseandwheyproteinisolateonthepropertiesofbarleyextrudates.
Kirjoranta,S.,Solala,K.,Suuronen,J.P.,Penttilä,P.,Peura,M.,Serimaa,R.,Tenkanen,M.&Jouppila,K.(2012).InternationalJournalofFoodScience&Technology,47(6),1165-1175.
LinktoArticle
ReadAbstract
Extrusioncookingiscommonlyusedintheproductionofsnacks.Inthepresentstudy,extrudateswerepreparedusingbarleyflouraloneandwiththeadditionofeitherpolydextrose(PD)orwheyproteinisolate(WPI)andbothPDandWPI.Independentprocessvariableswerewatercontentofthemass(17%,20%and23%),screwspeed(200,350and500rpm)andtemperatureofsection6anddie(110,130and150°C).Expansion,hardness,watercontent,porosityandchemicalcompositionoftheextrudateswereanalysed.HighlyporousandexpandedsnackproductswithhighdietaryfibreandproteincontentswereobtainedfrombarleyflourandWPIwhenwatercontentofmasswas17%,screwspeed500rpmandtemperatureofsection6anddie130°C.BarleyflouraloneorwithPDresultedinhardandnon-expandedextrudates.Expansionofextrudateswasstatisticallysignificantlyincreasedwithdecreasingwatercontentofthemassandincreasingscrewspeedinalltrials.
EliminationofresistantstarchtypeIIwithintheframeworkoftotalstarchanddietaryfibreanalysisbymicrowaveirrADIation.
Themeier,H.,Hollmann,J.,Neese,U.&Lindhauer,M.G.(2010).QualityAssuranceandSafetyofCrops&Foods,2(1),46-51.
LinktoArticle
ReadAbstract
IntroductionThepresenceofresistantstarchinsamplescontainingnon-starchpolysaccharideshasalwaysbeenachallengetoenzymatictotalstarchandtotalfibreanalysis.ObjectiveandmethodsBasedonmicrowave-inducedpressuredisintegrationtechniquetheAssociationofOfficialAnalyticalChemistsmethodsforthedeterminationoftotalstarch(AOAC996.11)andtotaldietaryfibre(AOAC991.43)havebeenmodifiedtocompletelyeliminateundesirableresistantstarchfractionswithrespecttodigestionproceduresusingthermostableα-amylaseandamyloglucosidase.ResultsMicrowavetreatmentofhigh-amylosestarchsamplesresultedinexcellenttotalstarchrecoveryintheAssociationofOfficialAnalyticalChemistsstandardmethodno.996.11.AfterintegrationofmicrowavedisintegrationtechniqueintothetotaldietaryfibremethodAOAC911.43irradiationexperimentswithdifferentmodelmixturesconsistingofnon-starchpolysaccharidescomponentsandhigh-amylosestarchfractionsresultedinthecompleteeliminationofundesirableresistantstarchfractions.ConclusionThereforethemicrowavetechniquecanbeaveryefficientmeansfortheeliminationofresistantstarchandprovidesmorerealisticvaluesinanalyticaltotaldietaryfibreprocedureswithrespecttosamplescontainingcriticalenzymeresistantstarches.
ResistantstarchinMicronesianbananacultivarsoffershealthbenefits.
Thakorlal,J.,Perera,C.O.,Smith,B.,Englberger,L.&Lorens,A.(2010).PacificHealthDialog,16(1),49-59.
LinktoArticle
ReadAbstract
ResistantStarch(RS)isatypeofstarchthatisresistanttostarchhydrolyzingenzymesinthestomachandthusbehavesmorelikedietaryfibre.RShasbeenshowntohavebeneficialeffectsindiseasepreventionincludingmodulationofglycaemicindexdiabetes,cholesterolloweringcapabilityandweightmanagement,whicharecriticallyimportantformanypeopleintheFederatedStatesofMicronesia.GreenbananasareknowntocontainsubstantialconcentrationsofRSandareacommonpartoftheMicronesiandiet.ThereforetheaimofthisstudywastodeterminetheRScontentinbananacultivarsfromPohnpei,Micronesia:Daiwang,Inahsio,Karat,UtinKerenisandUtinRuk,forwhichnosuchinformationwasavailable.UtinKerenis,InahsioandUtinRukwerefoundtocontainthehighestamountsofRS.ThefateofRSafterincorporationintoafoodproduct(i.e..pancakes)wasalsostudiedandasignificantreductionintheRScontentwasfoundforeachcultivaraftercooking.Microscopyofthebananasamplesindicatedthattheoverallmorphologyofthecultivarswassimilar.Inconclusion,greenbanana,includingthesevarieties,shouldbepromotedinMicronesiaandotherplacesfortheirrichRScontentandrelatedhealthbenefitsincludingdiabetescontrol.FurtherresearchisneededtomoreclearlydeterminetheeffectsofcookingandfoodprocessingonRS.
Enzymesusceptibilityofhigh-amylosestarchprecipitatedfromsodiumhydroxidedispersions.
Evans,A.&Thompson,D.B.(2008).CerealChemistry,85(4),480-487.
LinktoArticle
ReadAbstract
TypeIIIresistantstarch(RS)isunderstoodtobeduetotheorderedstructureformationintheprocessofretrogradation.Mosttreatmentsofgranularhigh-amylosemaizestarch(HAMS)donotcompletelyeliminatetheoriginalorderedstructure.WehypothesizedthatresidualorderedstructurewouldconstrainsubsequentphysicalreassociationofchainsandtheformationofRS.Theobjectivewastogeneratedifferencesinenzymesusceptibilityusingtwomeansofprecipitationoffullydispersedstarchandtorelatedifferencesinenzymesusceptibilitytothestructureoftheprecipitates.Dispersionsinsodiumhydroxidewereprecipitatedeitherwithethanolorammoniumsulfate.RSandthetimecourseofdigestionweredetermined.Crystallinityandhelicitywereestimatedusingwide-angleX-raydiffractionandsolid-state13CCP/MASNMR,respectively.PrecipitationofwholestarchwithethanolledtolowerRSvalues(≈24%)thanprecipitationwithammoniumsulfate(≈39%)andalsotohigherreactionrateconstantsforanearlycomponentofdigestion.EthanolprecipitationofabranchedstarchfractiongaveessentiallynoRS,whereasammoniumsulfateprecipitationofthesamebranchedmaterialhad>20%RS.Ethanolprecipitatescontainedsinglehelices,inmostbutnotallcases,contributingtoV-typecrystallinity.AmmoniumsulfateprecipitateshaddoublehelicescontributingtoB-typecrystallinity.
Invitrofermentationofspentturmericpowderwithamixedcultureofpigfaecalbacteria.
Han,K.H.,Azuma,S.&Fukushima,M.(2014).Food&Function,10,2446-2452.
LinktoArticle
ReadAbstract
Thefermentationpotentialofspentturmericwasstudiedininvitroswinefaecalbatchcultures.Thespentturmericresidue(theenzyme-resistantfractionfromspentturmeric,EST)wasobtainedthroughtheuseofthedigestiveenzymesamyloglucosidaseandpancreatinandcomparedtocelluloseandhigh-amylosestarch(HAS)ascarbonsources.ESTshowedsignificantincreasesintotalanaerobes,bifidobacteria,lactobacilliandlacticacidbacteriapopulationscomparedtocelluloseat12,24and48h,andthetotalanaerobiclevelintheHASgroupwassignificantlyhigherthaninthecellulosegroupat24and48h.However,asignificantdecreaseinthecoliformpopulationwasonlyfoundintheHASgroupcomparedtothecellulosegroupat48h.Thetotalshort-chainfattyacid(SCFA)concentrationsintheESTandHASgroupsweresignificantlyhigherthanthatinthecellulosegroupat12hand48h.However,therewasnosignificantdifferenceinthetotalSCFAconcentrationbetweentheESTandHASgroupsat12hand48h.AmmoniaandpHlevelsintheESTandHASgroupsweresignificantlylowerthanthoseinthecellulosegroupat24and48h,buttherewasnosignificantdifferencebetweentheESTandHASgroups.Theseresultsindicatethatthefermentationpotentialoftheenzyme-resistantfractionfromspentturmericiscomparabletothatofcommerciallyestablishedresistantstarch.
Impactofancientcereals,pseudocerealsandlegumesonstarchhydrolysisandantiradicalactivityoftechnologicallyviableblendedbreads.
Collar,C.,Jiménez,T.,Conte,P.&Fadda,C.(2014).CarbohydratePolymers,113,149-158.
LinktoArticle
ReadAbstract
Wheatflourreplacementfrom22.5%upto45%byincorporationofternaryblendsofteff(T),greenpea(GP)andbuckwheat(BW)floursprovidedtechnologicallyviableandacceptablesensoryratedmultigrainbreadswithsuperiornutritionalvaluecomparedtothe100%wheatflour(WT)counterparts.Blendedbreadsexhibitedsuperiornutritionalcomposition,largeramountsofbioaccessiblepolyphenols,higheranti-radicalactivity,andlowerandslowerstarchdigestibility.Simultaneouslowerrapidlydigestiblestarch(57.1%)andhigherslowlydigestiblestarch(12.9%)andresistantstarch(2.8%)contents(gper100gfreshbread),consideredsuitablenutritionaltrendsfordietarystarchfractions,weremetbytheblendformulated7.5%T,15%GP,15%BK.Theassociatedmixturethatreplaced37.5%WT,showedaratherlowerextentandslowerrateofstarchhydrolysiswithmedium-lowvaluesforC∞,andH90,andlowestk,andintermediateexpectedGlycaemicIndex(86).Allmultigrainbreadscanbelabelledassourceofdietaryfibre(≥3gdietaryfibre/100gbread).
CharacterizationandPrebioticEffectoftheResistantStarchfromPurpleSweetPotato.
Zheng,Y.,Wang,Q.,Li,B.,Lin,L.,Tundis,R.,Loizzo,M.R.,Zheng,B.&Xiao,J.(2016).Molecules,21(7),932.
LinktoArticle
ReadAbstract
Purplesweetpotatostarchisapotentialresourceforresistantstarchproduction.Theeffectsofheat-moisturetreatment(HMT)andenzymedebranchingcombinedheat-moisturetreatment(EHMT)onthemorphological,crystallinityandthermalpropertiesofPSPstarcheswereinvestigated.Theresultsindicatedthat,afterHMTorEHMTtreatments,nativestarchgranuleswithsmoothsurfacewasdestroyedtoformamorecompact,irregularandsheet-likestructure.ThecrystallinepatternwastransformedfromC-typetoB-typewithdecreasingrelativecrystallinity.Duetostrongercrystallitesformedinmodifiedstarches,theswellingpowerandsolubilityofHMTandEHMTstarchweredecreased,whilethetransitiontemperaturesandgelatinizationenthalpyweresignificantlyincreased.Inaddition,HMTandEHMTexhibitedgreatereffectsontheproliferationofbifidobacteriacomparedwitheitherglucoseorhighamylosemaizestarch.
Metabolomicandtranscriptomicresponsesinducedintheliversofpigsbythelong-termintakeofresistantstarch.
Metabolomicandtranscriptomicresponsesinducedintheliversofpigsbythelong-termintakeofresistantstarch.Sun,Y.,Yu,K.,Zhou,L.,Fang,L.,Su,Y.&Zhu,W.(2016).Journalofanimalscience,94(3),1083-1094.
LinktoArticle
ReadAbstract
Thepresentstudyinvestigatedmetabolomicandtranscriptomicresponsesintheliversofpigstoevaluatetheeffectsofresistantstarchonthebody’smetabolismattheextraintestinallevel.Thirty-sixDuroc×Landrace×LargeWhitegrowingbarrows(70dofage)wererandomlyallocatedtoeitherthecornstarch(CS)grouportherawpotatostarch(RPS)groupwitharandomizedcompleteblockdesign;eachgroupconsistedof6replicates(pens),with3pigsperpen.PigsintheCSgroupwereofferedacorn–soybean–baseddiet,whereaspigsintheRPSgroupwereputonadietinwhich230(growing)or280g/kg(finishing)purifiedCSwasreplacedwithpurifiedRPSduringa100-dtrial.Theliversofpigswerecollectedformetabolomeandgeneexpressionanalysis.Gaschromatography–massspectrometryanalysisshowedthatcomparedwiththeCSdiet,theRPSdietdecreased(P<0.05)=""cholesterol=""and=""palmitic=""acid=""as=""well=""as=""increased="">P<0.05)=""3-hydroxybutyric=""acid,=""which=""indicated=""the=""reduction=""of=""adipose=""weight=""and=""fatty=""acid=""biosynthesis=""and=""the=""elevation=""of=""fatty=""acid=""β-oxidation.=""in=""addition,=""2-ketoglutaric=""acid=""and=""glucose-6-phosphate=""were=""increased="">P<0.05)=""although=""pyruvic=""acid=""was=""decreased="">P<0.05)=""in=""the=""rps=""group,=""indicating=""the=""upregulated=""capacity=""of=""glucose=""phosphorylation=""and=""glycolysis.=""microarray=""analysis=""showed=""that=""the=""mrna=""expression=""of="">transmembraneglycoproteinclusterofdifferentiation36(CD36),carnitinepalmitoyltransferase1B(CPT1B),andmedium-chainacyl-CoAdehydrogenase(ACADM)weredownregulated(P<0.05)=""whereas="">1-acylglycerol-3-phosphateO-acyltransferase4(AGPAT4),glycerol-3-phosphateacyltransferase(GPAT),andfattyacidbindingprotein1(FABP1)wereupregulated(P<0.05)=""in=""the=""rps=""diet,=""indicating=""a=""decrease=""in=""fatty=""acid=""intake=""and=""synthesis=""and=""an=""increase=""in=""fatty=""acid=""oxidation=""and=""glycerophospholipid=""synthesis.=""the=""results=""demonstrated=""that=""the=""long-term=""consumption=""of=""rps=""could=""modulate=""hepatic=""lipid=""metabolism=""by=""decreasing=""fatty=""acid=""synthesis=""as=""well=""as=""increasing=""lipid=""oxidation=""and=""glycerophospholipid=""synthesis.="">
Megazyme特约代理
点击浏览大图收藏此产品
公司名称:
产品资料:
更新时间:
所 在 地:
生产地址:
浏览次数:
苏州蚂蚁淘生物科技有限公司
查看pdf文档
2015-11-20 15:22:24
上海市
1253
【简单介绍】
Megazyme代理,Megazyme上海代理,Megazyme北京代理,Megazyme总代理,Megazyme一级代理,Megazyme特约代理
苏州蚂蚁淘生物科技有限公司Megazyme专业代理,具体产品信息欢迎电询:4006551678
【详细说明】
世界*实验材料供应商Megazyme正式授权上海起发为其中国代理,Megazyme 在一直是行业的标杆,一直为广大科研客户提供zui为优质的产品和服务,上海起发一直秉承为中国科研客户带来的产品,的服务, 签约Megazyme 就是为了给广大科研客户带来更加完善的产品和服务,您的满意将是我们zui大的收获
Megazyme 中国代理,Megazyme 上海代理,Megazyme北京代理,Megazyme 广东代理,Megazyme 江苏代理 Megazyme 湖北代理, Megazyme 天津, Megazyme 黑龙江代理, Megazyme内蒙古代理, Megazyme 吉林代理, Megazyme 福建代理, Megazyme 江苏代理, Megazyme 浙江代理, Megazyme 四川代理,
爱尔兰Megazyme,Megazyme
爱尔兰Megazyme是一家全球的制造和供应高品质和创新的检测谷物,食品,饲料,发酵,乳制品和葡萄酒行业的技术。Megazyme成立于1988年,该公司目前提供了超过70种诊断试剂盒和超过300种其他试剂和底物
http://www.megazyme.com/