品牌咨询
联系方式
公司地址
苏州工业园区生物纳米园A4#216
联系电话
4000-520-616 / 18915418616
传真号码
0512-67156496
电子邮箱
info@ebiomall.com
公司网址
https://www.ebiomall.com

Glen research/C8-Alkyne-dC-CE Phosphoramidite/1kit/10-1543-02M

价格
¥22500.00
货号:10-1543-02M
浏览量:92
品牌:Glen research
服务
全国联保
正品保证
正规发票
签订合同
商品描述
Technical Documents
Description
Details
Intellectual Property
Dilution/Coupling Data
Related Products

Technical Documents

Safety Data Sheet

Glen Report 23.13: New Products – Click Chemistry Update

Glen Report 24.26: Advances in copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC): Introducing Oligo-Click Kits

Glen Report 28.21: Versatile Applications of the Copper(I)-Catalyzed Click Chemistry


Description

The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between azides and alkynes to form 1,2,3-triazoles, as reported1 by Sharpless, was found to be so exquisitely regioselective and efficient at even the most mild conditions that Sharpless coined the term ‘Click Chemistry" to describe it.The use of this method for DNA modification has been somewhat delayed by the fact that copper ions damage DNA, typically yielding strand breaks.2 As these problems have now been overcome by the use of copper(I)-stabilizing ligands (e.g., tris(benzyltriazolylmethyl)amine, TBTA3), Carell et al. and Seela et al. discovered that the CuAAC reaction can be used to functionalize alkyne-modified DNA nucleobases with extremely high efficiency.4 Oligonucleotides bearing a single nucleosidic alkyne group can be prepared usinga C8-Alkyne-dC or dT-CE Phosphoramidite.Purified oligonucleotides are usually modified with 2-5 equivalents of the corresponding marker-azide (e.g., fluorescent-dye azides). After the addition of precomplexed Cu(I), complete conversion to the labelled oligo is observed in a time span between 30 min and 4 hours. After a simple precipitation step, labelled oligonucleotides can be recovered in near quantitative yields. Using a combination of C8-Alkyne, C8-TIPS-Alkyne and C8-TMS-Alkyne, it is possible to label oligonucleotides in up to three separate click reactions. The alkyne groups on the last two monomers are protected, respectively, with triisopropylsilyl (TIPS) and trimethylsilyl (TMS) protecting groups.5,6The first click reaction on solid phase on a C8-Alkyne yields the singly modified oligonucleotide with full retention of the TIPS and/or TMS protecting group.For double click, a C8-TIPS-Alkyne is used as the second nucleoside and the TIPS protecting group is cleaved with tetrabutylammonium fluoride (TBAF) without causing any damage to the DNA.The second click reaction in solution yields the doubly modified oligonucleotide in excellent yield. For the introduction of three different labels, all three nucleosides are introduced into oligonucleotides. The first click reaction is performed directly on the resin. The singly modified oligonucleotide is subsequently cleaved from the support with concomitant cleavage of the TMS group and retention of the TIPS protecting group. The second click reaction is performed in solution. Precipitation of the doubly modified oligonucleotide, cleavage of the TIPS group with TBAF, and a subsequent third click reaction in solution furnishes the desired triply modified oligonucleotide in excellent overall yield.

Details

Usage

  • Coupling: 3 minute coupling time recommended.
  • Deprotection: Ammonium hydroxide for 2 hours at 55 °C or as required by nucleobases. Note: Deprotection in AMA (50:50 Ammonium hydroxide/MethylAmine) may result in about 5% N4-methyl-dC side product at the modification site.
Specifications
DiluentAnhydrous Acetonitrile
StorageFreezer storage, -10 to -30�C, dry
Stability1-2 days

Intellectual Property

baseclick GmbH has been granted the following patents (1-3) besides its further patent applications (4-5). |1. WO  2006/117161  (New  labelling  strategies  for  the  sensitive detection of analytes)|2. WO 2008/952775 (Click chemistry for the production of reporter molecules)|3. WO 2010/115957 (Click Chemistry on heterogeneous catalysts)|4. PCT/EP 2013/064610 (Anandamide-modified nucleic molecules)|5. PCT/EP 2015/056007 (Self-assembly of DNA Origami: a diagnostic tool)|baseclick GmbH holds a worldwide exclusive license for granted patent application|WO 03/101972 (Copper-catalysed ligation of azides and acetylenes  for  the  nucleic  acid field) in the area of diagnostics and research. As Glen Research and baseclick are partners, Glen Research is now able to help in sublicensing this outstanding technology.

Dilution/Coupling Data

The table below show pack size data and, for solutions, dilution and approximate coupling based on normal priming procedures.

ABI 392/394

Catalog #Pack SizeGrams/Pack0.1M Dil. (mL)Approximate Number of Additions
LV40LV20040nm0.2μm1μm10μm
10-1543-020.25 g.25grams2.6775.6745.428.3820.6415.133.78
10-1543-90100 µmol.094grams120127.55.4541
10-1543-9550 µmol.047grams0.53.3321.250.910.670.17

Expedite

Catalog #Pack SizeGrams/PackDilution (mL)Approximate Number of Additions
Molarity50nm0.2μm1μm15μm
10-1543-020.25 g.25grams3.980.0773.245.7533.274.58
10-1543-90100 µmol.094grams1.50.0723.614.7510.731.48
10-1543-9550 µmol.047grams0.750.078.65.383.910.54


Glen research表观遗传学是生物学和癌症研究中发展最快的领域之一。虽然基本的遗传密码定义了合成哪些蛋白质和基因产物,但表观遗传控制定义了它们何时何地表达。基因表达的这种动态控制对于X染色体失活,胚胎发生,细胞分化至关重要,并且似乎是记忆形成和突触可塑性的组成部分。在2009年,两份报告1,2  中所述5-羟甲基-2'-脱氧胞苷的发现(HMDC),浦肯野神经元和胚胎干细胞的新颖的DC修饰。后来,第三份报告发现这种修饰在与较高认知功能相关的脑组织中高度丰富。3 dC修饰是通过α-酮戊二酸依赖性十一种11易位(TET)酶的作用产生的,该酶将5-Me-dC氧化为hmdC。这一发现激发了关于可能通过例如碱基切除修复(BER)借助专门的DNA糖基化酶发生的活性脱甲基途径的讨论。或者,可以设想一种方法,其中将hmdC的羟甲基进一步氧化为5-甲酰基-dC(fdC)或5-羧基-dC(cadC),然后消除甲酸或二氧化碳4,5。Glen Research自成立以来就一直为这项研究提供支持,为合成包含所有新dC衍生物-hmdC,fdC和cadC的寡核苷酸提供了基础。第一代hmdC亚磷酰胺已被广泛接受,但需要相当苛刻的脱保护条件。因此,介绍了由Carell和同事开发的与UltraMild脱保护兼容的第二代构建基(5-Hydroxymethyl-dC II)。6  5-甲酰基-dC III旨在满足制备包含所有甲基化变体的寡核苷酸的所有要求。