品牌咨询
联系方式
公司地址
苏州工业园区生物纳米园A4#216
联系电话
4000-520-616 / 18915418616
传真号码
0512-67156496
电子邮箱
info@ebiomall.com
公司网址
https://www.ebiomall.com

TheNativeAntigenCompany/Leptospira Biflexa Antigen (Strain Patoc 1)/100ug/NAT41582-100

价格
¥5500.00
货号:NAT41582-100
浏览量:127
品牌:TheNativeAntigenCompany
服务
全国联保
正品保证
正规发票
签订合同
商品描述

LEPTOSPIRA BIFLEXA ANTIGEN (STRAIN PATOC 1)

Leptospira biflexa antigen (strain Patoc 1) is a non-pathogenic organism, which can be used as a prototype antigen for the development and manufacturing of diagnostics reagents such as ELISA. L. biflexa is cultivated in broth culture and after harvest extracted by ethanol. The antigen is suitable for the detection of IgM and IgG antibodies against Leptospira ssp.

PRODUCT DETAILS – LEPTOSPIRA BIFLEXA ANTIGEN (STRAIN PATOC 1)

  • Leptospira biflexa antigen (strain Patoc 1), serovar Patoc.
  • L. biflexa cultivated in Broth culture.
  • Alcohol extracted organisms presented in 100 mM glycine buffer, pH 9.5.
  • For immunoassay development or other applications.

BACKGROUND

Leptospirosis is a widespread zoonotic disease caused by systemic infection by pathogenic spirochetes of the genus Leptospira. Leptospira spp. are thin (0.1µm diameter and 6–20µm in length), flexible, motile, spiral-shaped bacteria and are surrounded by an outer envelope or external sheath which covers the cylindrical body. Two periplasmic flagella are located at opposite ends of the cell, with the free ends overlapping in the centre of the cell. The flagella are located between the outer envelope or sheath and the protoplasmic cylinder. The cytoplasmic contents are contained within the protoplasmic cylinder. A variety of protective and genus-specific antigens are located in the outer envelope and Lipopolysaccharide material appears to be an important antigenic component (Evangelista & Coburn, 2010).

Members of the genus Leptospira are conventionally grouped into two separate species based on pathogenicity. The pathogens form the parasitic ‘interrogans’ group whereas the non-pathogens form the saprophytic ‘biflexa’ group. Further distinction of these two species is based on serology where serologically related serovars are grouped into serogroups. Both pathogenic and saprophyte Leptospira species exist in nature (Woo et al., 1997). A wide variety of different mammalian species may be infected by pathogenic leptospires, which cause only a mild chronic-to-asymptomatic infection in reservoir hosts (such as rodents). However, bacteria are then shed by the host in urine and contaminate the environment, potentially leading to an infection in humans (Leptospirosis). Humans, are considered incidental hosts and symptoms can range from a mild and self-limited illness to much more severe symptoms (Weil’s disease) including multiple organ system complications and death (Adler & de la Peña Moctezuma, 2010).

Leptospira biflexa is a free-living saprophytic spirochete present in aquatic environments and does not infect animal hosts. L. interrogans and L. biflexa are morphologically similar, but can be distinguished from each other on the basis of pathogenicity to animals, serological properties or phenotypic characteristics. Normally, L. interrogans but not L. biflexa can be isolated from a patient’s blood, urine, cerebrospinal fluid or aqueous humor. However, epidemiological studies may require samples to be taken from fresh surface water of lakes or streams where L. interrogans and L. biflexa may coexist (Woo et al., 1997).

As the initial presentation of leptospirosis may be difficult to discern from some other infectious diseases, rapid and accurate diagnosis is essential in order to prevent the progression of the more severe form of the disease, particularly in developing countries. The available diagnostic tests are not always serovar-specific, because cross-reactivity against different serovars may occur between organisms in the same serogroup. There are also currently no widely available vaccines against leptospirosis for use in humans (Evangelista & Coburn, 2010).

This antigen has been manufactured for the application of basic research to improve Leptospira diagnostics and vaccine development.

REFERENCES

  • Adler B, de la Peña Moctezuma A. (2010). Leptospira and leptospirosis. Vet Microbiol. 140(3-4):287-96.
  • Evangelista, K. V., & Coburn, J. (2010). Leptospira as an emerging pathogen: a review of its biology, pathogenesis and host immune responses. Future microbiology, 5(9), 1413–1425.
  • Picardeau et al. (2008). Genome Sequence of the Saprophyte Leptospira biflexa Provides Insights into the Evolution of Leptospira and the Pathogenesis of Leptospirosis. PLOS ONE 3(2): e1607.
  • Woo et al. (1997). Rapid distinction between Leptospira interrogans and Leptospira biflexa by PCR amplification of 23S ribosomal DNA. FEMS Microbiology Letters, Volume 150, Issue 1, Pages 9–18.

Certificate of analysisSafety datasheet

Dry ice

TheNativeAntigenCompany我们在测定开发方面拥有多年经验。根据具体应用,我们建议并测试多种不同的ELISA格式,从简单的直接ELISA到具有封闭抗原的间接ELISA和双抗原结合ELISA。您不仅可以从我们的高级测定开发科学家那里获得咨询的好处,而且我们的内部表达系统还可以用于生产天然折叠的和完全糖基化的蛋白质和抗体,以用作最高质量的独特试剂,从而使您的ELISA处于优势反对竞争。我们的能力包括:+   ELISA设计和格式咨询+   定制抗原和抗体生产+   使用定制抗原作为免疫原(mAbs和pAbs)产生抗体+   ELISA中的抗原/抗体对优化+   与酶结合以检测抗体+   板涂+   ELISA优化  我们可以在项目的任何阶段为您的ELISA分析的开发提供支持,  提供定制服务,这些灵活性可以评估用于分析的最佳抗体  对,直至商业套件的全面开发。 如果您的概念还处于早期阶段,那么我们可以准备您的抗原,  提高您的抗体,并使用它们来开发特定的ELISA分析以满足您的需求。