品牌咨询
联系方式
公司地址
苏州工业园区生物纳米园A4#216
联系电话
4000-520-616 / 18915418616
传真号码
0512-67156496
电子邮箱
info@ebiomall.com
公司网址
https://www.ebiomall.com

TheNativeAntigenCompany/Rabbit Anti-Borrelia burgdorferi sensu stricto (B31) OspA Antibody/100ug/PAB21454-100

价格
¥6800.00
货号:PAB21454-100
浏览量:127
品牌:TheNativeAntigenCompany
服务
全国联保
正品保证
正规发票
签订合同
商品描述

RABBIT ANTI-BORRELIA BURGDORFERI SENSU STRICTO (B31) OSPA ANTIBODY

Rabbit Anti-Borrelia burgdorferi OspA antibody, is a polyclonal suitable for use in ELISA and western blotting applications. Strain B31 is the type strain (ATCC 35210) for this organism and was derived by limited dilutional cloning from the original Lyme-disease tick isolate obtained by A. Barbour (Johnson, et al., 1984).

PRODUCT DETAILS – RABBIT ANTI-BORRELIA BURGDORFERI SENSU STRICTO (B31) OSPA ANTIBODY

  • Rabbit anti-B. burgdorferi sensu stricto OspA polyclonal IgG antibody (strain B31).
  • Greater than 95% purity by SDS-PAGE and buffered in 0.02 M Potassium Phosphate, 0.15 M Sodium Chloride, pH 7.2.

BACKGROUND

Outer-Surface Protein A (OspA) is a 31 kDa lipoprotein encoded by Borrelia burgdorferi and is a major component of the spirochete’s extracellular matrix (Stevenson, et al., 1996), probably associated with lipid rafts and serving as a lipid-anchor (Toledo, et al., 2014). Strain B31 is the type strain (ATCC 35210) for this organism and was derived by limited dilutional cloning from the original Lyme-disease tick isolate obtained by A. Barbour (Johnson, et al., 1984). The Borrelia species causing Lyme disease express different OspA serotypes on their surface, B. burgdorferi (serotype 1), B. afzelii (serotype 2), B. garinii (serotypes, 3, 5 and 6) and B. bavariensis (serotype 4) (Wilske, et al., 1988).

Many of the borrelial surface antigens are lipid-modified proteins (i.e. lipoproteins), although a number of these surface-exposed lipoproteins (OspA, OspB, and OspC) are not found exclusively on the surface of the organism. These lipoproteins are also detected in the periplasm of the organism and can be shuttled to and from the borrelial surface at different points during infection. The interface between B. burgdorferi and its human host is its outer surface (and therefore proteins localized to the outer membrane) play an important role in dissemination, virulence, tissue tropism, and immune evasion. Antibodies directed against outer surface proteins have also been shown to protect animals and humans from infection with B. burgdorferi (Kenedy, et al., 2012).

OspA likely mediates the attachment of B. burgdorferi to the tick mid-gut by binding the mid-gut receptor TROSPA (Tick Receptor for OspA). TROSPA is downregulated to allow migration out of the tick mid-gut during feeding, and into the salivary glands before being transmitted to the mammalian host. This transition is believed to be facilitated by changes in expression of some B. burgdorferi genes, including OspA (Ding, et al., 2000). These changes may be regulated by changes in tick life cycle, changes in conditions during tick feeding (such as temperature, pH and nutrients) and/or in coordination with the course of infection in the mammal host (Norris, 2006).

A heterodimer of the linked C-terminal half of two OspA serotypes was shown to protect mice from a challenge with spirochetes expressing either OspA serotype 1, 2 or 5, when challenged with infected ticks and in vitro grown spirochetes (Comstedt, et al., 2014). OspA-specific human Mabs can prevent the transmission of B. burgdorferi from ticks to mice (Wang, et al., 2016). More recently, structural analysis of the human antibody LA-2/OspA complex has revealed specific residues that may be exploited to modulate recognition of the protective epitope of OspA potentially offering a new path towards prophylactic passive antibodies (Shivender, et al., 2017).

REFERENCES

  • Comstedt, P. et al., 2014. Design and Development of a Novel Vaccine for Protection against Lyme Borreliosis. PLoS One, 9(11), pp. 1-12.
  • Ding, W. et al., 2000. Structural identification of a key protective B-cell epitope in Lyme disease antigen OspA. J. Mol. Biol. , Volume 302, pp. 1153-1164.
  • Johnson, R.C., et al. 1984. Borrelia burgdorferi sp. nov.: etiologic agent of Lyme disease. Int J Syst Bacteriol, 34, pp. 496–497.
  • Kenedy, M. R., Lenhart, T. R. & Akins, D. R., 2012. The Role of Borrelia burgdorferi Outer Surface Proteins. FEMS Immunol Med Microbiol., 66(1), pp. 1-19.
  • Norris, S. J., 2006. The dynamic proteome of Lyme disease Borrelia. Genome Biol., 7(3), p. 209.
  • Shivender, S. et al., 2017. Structural and Molecular Analysis of a Protective Epitope of Lyme Disease Antigen OspA and Antibody Interactions. J Mol Recognit., 30(5), pp. 1-15.
  • Stevenson, B., Tilly, K. & Rosa, P. A., 1996. A Family of Genes Located on Four Separate 32-Kilobase Circular Plasmids in Borrelia burgdorferi B31. J Bacteriol, 178(12), pp. 3508-3516.
  • Toledo, A. et al., 2014. Selective Association of Outer Surface Lipoproteins with the Lipid Rafts of Borrelia burgdorferi. MbIO, 5(2).
  • Wang, Y. et al., 2016. Pre-exposure Prophylaxis With OspA-Specific Human Monoclonal Antibodies Protects Mice Against Tick Transmission of Lyme Disease Spirochetes. J Infect Dis., 214(2), p. 205–211.
  • Wilske, B., 1988. Antigenic variability of Borrelia burgdorferi. Ann N Y Acad Sci, 539, pp. 126-43.

Product datasheet – PAB21454-25Product datasheet – PAB21454-100Safety datasheet

Western blot showing detection of 0.1µg of recombinant OspA protein. Lane 1: Molecular weight markers. Lane 2: MBP-OspA fusion protein (arrow; expected MW: 70.5 kDa). Lane 3: MBP alone. Protein was run on a 4-20% gel, then transferred to 0.45 µm nitrocellulose. After blocking with 1% BSA-TTBS overnight at 4°C, primary antibody was used at 1:1000 at room temperature for 30 min. HRP-conjugated Goat Anti-Rabbit secondary antibody was used at 1:40,000 in HiGlo Blocking Buffer and imaged on the VersaDoc™ MP 4000 imaging system (Bio-Rad).

Dry ice – PAB21454-25Ambient – PAB21454-100

TheNativeAntigenCompany我们在测定开发方面拥有多年经验。根据具体应用,我们建议并测试多种不同的ELISA格式,从简单的直接ELISA到具有封闭抗原的间接ELISA和双抗原结合ELISA。您不仅可以从我们的高级测定开发科学家那里获得咨询的好处,而且我们的内部表达系统还可以用于生产天然折叠的和完全糖基化的蛋白质和抗体,以用作最高质量的独特试剂,从而使您的ELISA处于优势反对竞争。我们的能力包括:+   ELISA设计和格式咨询+   定制抗原和抗体生产+   使用定制抗原作为免疫原(mAbs和pAbs)产生抗体+   ELISA中的抗原/抗体对优化+   与酶结合以检测抗体+   板涂+   ELISA优化  我们可以在项目的任何阶段为您的ELISA分析的开发提供支持,  提供定制服务,这些灵活性可以评估用于分析的最佳抗体  对,直至商业套件的全面开发。 如果您的概念还处于早期阶段,那么我们可以准备您的抗原,  提高您的抗体,并使用它们来开发特定的ELISA分析以满足您的需求。