品牌咨询
联系方式
公司地址
苏州工业园区生物纳米园A4#216
联系电话
4000-520-616 / 18915418616
传真号码
0512-67156496
电子邮箱
info@ebiomall.com
公司网址
https://www.ebiomall.com

Ossila/B3PymPm Sublimed | 925425-96-3/250 mg/M2174A1

价格
¥13640.00
货号:M2174A1
浏览量:127
品牌:Ossila
服务
全国联保
正品保证
正规发票
签订合同
商品描述

B3PymPm is an isomer to B2PymPm and B4PymPm, with a 2-methylpyrimidine core structure with four pyridine pendants. It is electron-deficient and can be used in OLED devices as an electron-transporting or hole-blocking layer material.

B3PymPm is known to form hydrogen bonding in and between molecules. The intermolecular and intramolecular hydrogen bondings are believed to promote film morphology - hence enhancing charge mobility.

Due to its electron-deficient nature, together with TCTA, B3PymPm is also used in thermally activated delayed fluroescent (TADF) devices as an exciplex-forming cohost to fabricate highly-efficient fluorescent organic light-emitting diodes.

General Information

CAS number925425-96-3
Full name4,6-Bis(3,5-di(pyridin-3-yl)phenyl)-2-methylpyrimidine, 4,6-Bis(3,5-di-3-pyridinylphenyl)-2-methylpyrimidine
Chemical formulaC37H26N6
Molecular weight554.64 g/mol
Absorptionλmax 248 nm in DCM
Fluorescencen/a
HOMO/LUMOHOMO = 6.97 eV, LUMO = 3.53 eV [1]; ET1 = 3.08 eV
Classification / FamilyPyrimidine derivatives, Highly efficient light-emitting diodes, Organic electronics, Electron-transport layer (ETL) materials, Hole-blocking layer (HBL) materials, Sublimed materials.

Product Details

PuritySublimed >99.0% (HPLC)
Melting point326 °C
AppearanceWhite crystals/powder

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED Devices page.

Chemical Structure

B3PymPm chemical structure
Chemical structure of B3PymPm

Device Structure(s)

Device structureITO/15 wt.% Rb2CO3:B3PymPm (20 nm)/B3PymPm (30 nm)/8 wt.% Ir(ppy)3:CBP (15 nm)/TAPC (30 nm)/8 wt.% ReO3:TAPC (20 nm)/Al [2]
ColourGreen  green
Max. Power Efficiency79.8 lm W1
Max. EQE 19.8%
Device structureITO (150 nm)/TAPC (20 nm)/TCTA (10 nm)/TCTA:B3PYMPM:Ir(mphq)2(acac) (5 nm, 3 wt%)/TCTA:B3PYMPM:Ir(ppy)2(acac) (25 nm, 8 wt%)/B3PYMPM (45 nm)/LiF (0.7 nm)/Al (100 nm) [3]
ColourOrange  orange
Max. Power Efficiency70.1 lm W1
Max. EQE22.8%
Device structureITO (70 nm)/ TAPC (75 nm)/TCTA (10 nm)/TCTA:B3PYMPM:4 wt % Ir(dmppy-pro)2tmd* (30 nm)/B3PYMPM (45 nm)/LiF (0.7 nm)/Al (100 nm) [4]
ColourGreen  green
Max. Current Efficiency126 cd/A
Max. EQE 36.0%
Device structureITO (70 nm)/ TAPC (75 nm)/TCTA (10 nm)/TCTA:B3PYMPM:4 wt % Ir(dmppy-ph)2tmd* (30 nm)/B3PYMPM (55 nm)/LiF (0.7 nm)/Al (100 nm) [4]
ColourYellow  yellow
Max. Current Efficiency108 cd/A
Max. EQE 38.1%
Device structureITO (70 nm)/TAPC ( 80 nm)/TCTA (10 nm)/TCTA:B3PYMPM:8 wt% Ir(ppy)2(acac)(30 nm)/B3PYMPM (40 nm)/Al (100 nm) [5]
ColourGreen  green
Max. Current Efficiency127.3 lm W1
Max. EQE30.2%
Device structureITO (70 nm)/TAPC (75 nm)/TCTA (10 nm)/TCTA:B3PYMPM:8.4 mol% Ir(ppy)2tmd* (30 nm)/B3PYMPM (45 nm)/LiF (0.7 nm)/Al (100 nm) [6]
ColourGreen  green
Max. Current Efficiency142.5 lm W1
Max. EQE32.3%

*For chemical structure information, please refer to the cited references

Pricing

GradeOrder CodeQuantityPrice
Sublimed (>99.0% purity)M2174A1250 mg£266.00
Sublimed (>99.0% purity)M2174A1500 mg£426.00
Sublimed (>99.0% purity)M2174A11 g£682.00

MSDS Documentation

B3PymPm MSDSB3PymPm MSDS sheet

Literature and Reviews

  1. Development of high performance OLEDs for general lighting, H. Sasabe et al., J. Mater. Chem. C, 1, 1699 (2013); DOI: 10.1039/c2tc00584k.
  2. A high performance inverted organic light emitting diode using an electron transporting material with low energy barrier for electron injection, J. Lee et al., Org. Electron., 12, 1763–1767 (2011); doi: 10.1016/j.orgel.2011.07.015.
  3. High efficiency and non-color-changing orange organic light emitting diodes with red and green emitting layers, S. Lee et al., Org. Electron., 14, 1856–1860 (2013); doi: 10.1016/j.orgel.2013.04.020.
  4. Design of Heteroleptic Ir Complexes with Horizontal Emitting Dipoles for Highly Efficient Organic Light-Emitting Diodes with an External Quantum Efficiency of 38%, K. Kim et al,  Chem. Mater., 28, 7505−7510 (2016); DOI: 10.1021/acs.chemmater.6b03428.
  5. Organic Light-Emitting Diodes with 30% External Quantum Efficiency Based on a Horizontally Oriented Emitter, S. Kim et al., Adv. Funct. Mater., 23, 3896–3900 (2013); DOI: 10.1002/adfm.201300104.
  6. Highly Effi cient Organic Light-Emitting Diodes with Phosphorescent Emitters Having High Quantum Yield and Horizontal Orientation of Transition Dipole Moments, K. Kim et al., Adv. Mater., 26, 3844–3847 (2014); DOI: 10.1002/adma.201305733.

To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.

About Ossila Founded in 2009 by organic electronics research scientists, Ossila aims to provide the components, equipment, and materials to enable intelligent and efficient scientific research and discovery. Over a decade on, we're proud to supply our products to over 1000 different institutions in over 80 countries globally. With decades of academic and industrial experience in developing organic and thin-film LEDs, photovoltaics, and FETs, we know how long it takes to establish a reliable and efficient device fabrication and testing process. As such, we have developed coherent packages of products and services - enabling researchers to jump-start their organic electronics development program. The Ossila Guarantee Free Worldwide Shipping Eligible orders ship free to anywhere in the world Fast Secure Dispatch Rapid dispatch on in-stock items via secure tracked courier services Quality Assured Backed up by our free two year warranty on all equipment Clear Upfront Pricing Clear pricing in over 30 currencies with no hidden costs Large Order Discounts Save 8% on orders over $10,300.00 and 10% on orders over $12,900.00 Expert Support Our in-house scientists and engineers are always ready to help Trusted Worldwide Great products and service. Have already recommended to many people. Dr. Gregory Welch, University of Calgary Wonderful company with reasonably priced products and so customer-friendly! Shahriar Anwar, Arizona State University The Ossila Team Prof. David Lidzey - Chairman As professor of physics at the University of Sheffield, Prof. David Lidzey heads the university’s Electronic and Photonic Molecular Materials research group (EPMM). During his career, David has worked in both academic and technical environments, with his main areas of research including hybrid organic-inorganic semiconductor materials and devices, organic photonic devices and structures and solution processed photovoltaic devices. Throughout his academic career, he has authored over 220 peer-reviewed papers. Dr. James Kingsley - Managing Director James is a co-founder and managing director of Ossila. With a PhD in quantum mechanics/nanotech and over 12 years’ experience in organic electronics, his work on the fabrication throughput of organic photovoltaics led to the formation of Ossila and the establishment of a strong guiding ethos: to speed up the pace of scientific discovery. James is particularly interested in developing innovative equipment and improving the accessibility of new materials for solution-processable photovoltaics and hybrid organic-inorganic devices. Dr. Alastair Buckley - Technical Director Alastair is a lecturer of Physics at the University of Sheffield, specialising in organic electronics and photonics. He is also a member of the EPMM research group with a focus on understanding and applying the intrinsic advantages of functional organic materials to a range of optoelectronic devices. Alastair’s experience has not been gained solely in academia; he previously led the R&D team at MicroEmissive Displays and therefore has extensive technical experience in OLED displays. He is also the editor and contributor of "Organic Light-Emitting Diodes" by Elsevier. Our Research Scientists Our research scientists and product developers have significant experience in the synthesis and processing of materials and the fabrication and testing of devices. The vision behind Ossila is to share this experience with academic and industrial researchers alike, and to make their research more efficient. By providing products and services that take the hard work out of the device fabrication process, and the equipment to enable accurate, rapid testing, we can free scientists to focus on what they do best - science. Customer Care Team The customer care team is responsible for the customer journey at Ossila. From creating and providing quotes, through to procurement and inventory management, the customer care team is devoted to providing first class customer service. The general day to day responsibilities of a customer care team member involves processing customers orders and price queries, answering customer enquiries, arranging the shipment of parcels and notifying customers of updates on their orders. Collaborations and Partnerships Please contact the customer care team for all enquires, including technical questions about Ossila products or for advice on fabrication and measurement processes. Location and Facilities Ossila is based at the Solpro Business Park in Attercliffe, Sheffield. We operate a purpose-built synthetic chemistry and device testing laboratory on site, where all of our high-purity, batch-specific polymers and other formulations are made. This is complemented by a dedicated suite of thin-film and organic electronics testing and analysis tools within the device fabrication cluster housed in a class 1000 cleanroom in the EPSRC National Epitaxy Facility in Sheffield. All our electronic equipment is manufactured on-site.