PCE10 (PTB7-Th, PBDTTT-EFT) is one of the new generation of OPV donor polymers that could deliver on the heralded 10/10 target of 10% efficiency and 10 years lifetime. Brand new to the Ossila catalogue, this material is already showing impressive potential with in excess of 9% efficiency reported in the literature and over 7% produced when using large area deposition processes in air with a standard architecture [1,2]. In our own labs we have achieved efficiencies of over 9%.
The advantages of PCE10 are that not only does the material lower HOMO/LUMO levels and increase the efficiencies compared to PTB7, but more significantly it is also far more stable. Early indications are that it can be handled under ambient conditions without issues, suggesting that we can look forward to measuring the long term lifetime of the devices.
General Information
Full name | Poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] |
Synonyms | PCE10, PBDTT-FTTE, PTB7-Th |
Chemical formula | (C49H57FO2S6)n |
CAS number | 1469791-66-9 |
HOMO / LUMO | HOMO = 5.24 eV, LUMO = 3.66 eV [1] |
Optical | λmax = 720 nm; λedge = 785 nm; Eg (optical) = 1.58 eV |
Recommended solvents | Chlorobenzene, dichlorobenzene |
Classification / Family | Thienothiophene, Benzodithiophene, Heterocyclic five-membered ring, Organic semiconducting materials, Low band gap polymers, Organic Photovoltaics, Polymer Solar Cells, All-PSCs, NF-PSCs. |
Chemical Structure
Applications
PCE10 is one of the most exciting materials to have made it out of the labs in recent years and offers huge potential for more in depth research. We'll be working hard over the next few months to maximise efficiencies by optimising the device architecture, and we will provide further results as we do so. In the mean time, our current fabrication routine is below, and should you have any further questions or queries please contact us.
Usage Details
Reference Devices
Reference devices were made on batch M261 to assess the effect of PBDTTT-EFT:PC70BM active layer thickness on OPV efficiency with the below structure. These were fabricated under inert atmosphere (N2 glovebox) before encapsulation and measurement under ambient conditions.
Glass / ITO (100 nm) / PEDOT:PSS (30 nm) / PBDTTT-EFT:PC70BM (1:1.5) / Ca (5 nm) / Al (100 nm)
For generic details please see the fabrication guide and video. For specific details please see the below condensed fabrication report which details the optical modelling and optimisation of the multilayer stack.
The PBDTTT-EFT:PC70BM solution was made in chlorobenzene (CB) at 35 mg/ml before being diluted with 3% diiodooctane (DIO) to promote the correct morphology.
Active layer thicknesses were achieved from spincasting the film at spin speeds of 2000, 2700, 3900 and 6000 rpm for 30s. Additionally, a methanol wash was performed for all devices to help remove the DIO additive. For each of these spin speeds a total of 2 substrates (3 in the case of 2700 rpm) was produced, each with 8 pixels and the data presented below represents a non-subjective (no human intervention) analysis of the best 75% of pixels by PCE (18 pixels for 2700 rpm condition, 12 pixels for each other).
Overall, the average efficiency of 8.30% PCE (9.01% maximum) was found from a 2700 rpm spin speed.
Note on effect of epoxy: Due to the very high solubility of the PBDTTT-EFT it was noted during fabrication that the film changed colour when in contact with the encapsulation epoxy in liquid form for extended periods indicating that there was some miscibility. Inspection of the active areas underneath the top cathode indicated that the epoxy had not seeped into the active area before curing and device metrics indicate that this did not appear to affect performance. However, we would recommend minimising contact time between the epoxy and PBDTTT-EFT films before UV curing.
Condensed Fabrication Routine
Substrates and cleaning
All solvent cleaning was carried out using Ossila Annealing and Cleaning Beakers with Ossila's complimentary Substrate Rack for Cleaning and Storage.
- Edgeless 8 pixel substrates (S211)
- 5 minutes sonication in hot 10% NaOH solution
- 1x boiling deionised water (DI) dump rinse, 1x cold dump rinse
- 5 minutes sonication in hot 1% Hellmanex III
- 2x boiling DI rinses, DI
- 5 minutes sonication in warm isopropyl alcohol (IPA)
- 1x boiling DI dump rinse, 1x cold dump rinse
- N2 blow dry
- Substrates held on a hotplate at 120°C before spin-coating the hole transport layer (no further cleaning or surface treatment required)
PEDOT:PSS
- PEDOT:PSS (AI4083) filtered through a 0.45 µm PES filter (C2009S1)
- Spin on heated substrates at 6000 rpm for 30s
- Bake at 120°C after spincast
- Cathode strip wipe with cleanroom swab dipped in DI, replaced back on hotplate until transfer to glovebox
- Additional bake in the glovebox for 30 mins to remove residual moisture
Active Layer Solution
- Fresh stock solutions of PBDTTT-EFT (M261) made at a concentration 14 mg/ml in anhydrous CB and dissolved at 70°C for 1.5 hours
- Mixed with dry Ossila 95% C70 PCBM at a blend ratio of 1:1.5 to make an overall solution concentration of 35 mg/ml
- Mixed in 3% DIO and then heated the solution at 70°C with a stirbar for 2 hours
- Cooled prior to spincasting
Active layer test films
- Test film spun at 2000 rpm for 30s using unfiltered solution with a methanol wash before measuring with a Dektak surface profiler
- Reference film displayed a thickness of 140 nm
Active layers
- Devices spun using 30 µl dynamic dispense for 30s
- Methanol wash was then immediately performed as a secondary spin step, 20 µl at 4000 rpm for 30 seconds
- Cathode wiped with CB
Evaporation
Left in vacuum chamber overnight and evaporated with the below parameters.
- 5 nm Ca at 0.2 Å/s
- 100 nm Al at 1.5 Å/s
- Deposition pressure
Encapsulation
- As standard using Ossila Encapsulation Epoxy (E132) with glass coverslips (C181): 30 mins UV exposure in glovebox using UV lamp MEGA LV101
Measurements
- JV sweeps taken with Keithley 237 sourcemeter
- Illumination by Newport Oriel 9225-1000 solar simulator with 100 mW/cm2 AM1.5 output
- NREL certified silicon reference cell used to calibrate
- Lamp current: 7.8 A
- Solar output at start of testing: 1.00 suns at 23°C
- Solar output at end of testing: 1.00 suns at 25°C
- Air cooled substrates
- Room temperature at start of testing : 25°C
- Room temperature at end of testing: 25°C
- No aperture mask, pixel size: 0.4 mm2
MSDS Documentation
PTB7-Th MSDS sheet
Pricing
Batch | Quantity | Price |
M263/M264 | 100 mg | £297.00 |
M263/M264 | 250 mg | £593.00 |
M263/M264 | 500 mg | £1010.00 |
M263/M264 | 1 g | £1810.00 |
Batch details
Batch number | MW | Mn | PDI | Stock info |
M263 | 47,043 | 23,781 | 1.98 | Low Stock |
M264 | 57,467 | 27,395 | 2.10 | In Stock |
References
- Side Chain Selection for Designing Highly Efficient Photovoltaic Polymers with 2D-Conjugated Structure, S. Zhang et al., Macromolecules, 47, 4653-4659 (2014)
- Highly Efficient 2D-Conjugated Benzodithiophene-Based Photovoltaic Polymer with Linear Alkylthio Side Chain, L. Ye et al., Chemistry of Materials., 26, 3603-3605 (2014)
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.
About Ossila Founded in 2009 by organic electronics research scientists, Ossila aims to provide the components, equipment, and materials to enable intelligent and efficient scientific research and discovery. Over a decade on, we're proud to supply our products to over 1000 different institutions in over 80 countries globally. With decades of academic and industrial experience in developing organic and thin-film LEDs, photovoltaics, and FETs, we know how long it takes to establish a reliable and efficient device fabrication and testing process. As such, we have developed coherent packages of products and services - enabling researchers to jump-start their organic electronics development program. The Ossila Guarantee Free Worldwide Shipping Eligible orders ship free to anywhere in the world Fast Secure Dispatch Rapid dispatch on in-stock items via secure tracked courier services Quality Assured Backed up by our free two year warranty on all equipment Clear Upfront Pricing Clear pricing in over 30 currencies with no hidden costs Large Order Discounts Save 8% on orders over $10,300.00 and 10% on orders over $12,900.00 Expert Support Our in-house scientists and engineers are always ready to help Trusted Worldwide Great products and service. Have already recommended to many people. Dr. Gregory Welch, University of Calgary Wonderful company with reasonably priced products and so customer-friendly! Shahriar Anwar, Arizona State University The Ossila Team Prof. David Lidzey - Chairman As professor of physics at the University of Sheffield, Prof. David Lidzey heads the university’s Electronic and Photonic Molecular Materials research group (EPMM). During his career, David has worked in both academic and technical environments, with his main areas of research including hybrid organic-inorganic semiconductor materials and devices, organic photonic devices and structures and solution processed photovoltaic devices. Throughout his academic career, he has authored over 220 peer-reviewed papers. Dr. James Kingsley - Managing Director James is a co-founder and managing director of Ossila. With a PhD in quantum mechanics/nanotech and over 12 years’ experience in organic electronics, his work on the fabrication throughput of organic photovoltaics led to the formation of Ossila and the establishment of a strong guiding ethos: to speed up the pace of scientific discovery. James is particularly interested in developing innovative equipment and improving the accessibility of new materials for solution-processable photovoltaics and hybrid organic-inorganic devices. Dr. Alastair Buckley - Technical Director Alastair is a lecturer of Physics at the University of Sheffield, specialising in organic electronics and photonics. He is also a member of the EPMM research group with a focus on understanding and applying the intrinsic advantages of functional organic materials to a range of optoelectronic devices. Alastair’s experience has not been gained solely in academia; he previously led the R&D team at MicroEmissive Displays and therefore has extensive technical experience in OLED displays. He is also the editor and contributor of "Organic Light-Emitting Diodes" by Elsevier. Our Research Scientists Our research scientists and product developers have significant experience in the synthesis and processing of materials and the fabrication and testing of devices. The vision behind Ossila is to share this experience with academic and industrial researchers alike, and to make their research more efficient. By providing products and services that take the hard work out of the device fabrication process, and the equipment to enable accurate, rapid testing, we can free scientists to focus on what they do best - science. Customer Care Team The customer care team is responsible for the customer journey at Ossila. From creating and providing quotes, through to procurement and inventory management, the customer care team is devoted to providing first class customer service. The general day to day responsibilities of a customer care team member involves processing customers orders and price queries, answering customer enquiries, arranging the shipment of parcels and notifying customers of updates on their orders. Collaborations and Partnerships Please contact the customer care team for all enquires, including technical questions about Ossila products or for advice on fabrication and measurement processes. Location and Facilities Ossila is based at the Solpro Business Park in Attercliffe, Sheffield. We operate a purpose-built synthetic chemistry and device testing laboratory on site, where all of our high-purity, batch-specific polymers and other formulations are made. This is complemented by a dedicated suite of thin-film and organic electronics testing and analysis tools within the device fabrication cluster housed in a class 1000 cleanroom in the EPSRC National Epitaxy Facility in Sheffield. All our electronic equipment is manufactured on-site.