

Molybdenum Disulfide (MoS2) is a member of the transition metal dichalcogenides (TMDC) family. Due to its natural availability as molybdenite, it is one of the most studied and celebrated TMDCs.
Like graphene, MoS2 has a similar two-dimensional layered structure - with each individual layer stacked upon each other to form the bulk single crystal. Each layer of MoS2 is composed of a plane of hexagonally-arranged molybdenum atoms, positioned between two planes of hexagonally-arranged sulfur atoms. Like graphite, each layer is bound are bound by weak van der Waals forces. Because of this, it is possible to obtain monolayer to few-layer crystal flakes from a bulk crystal via mechanical exfoliation (using scotch tape).
General Information
CAS number | 1317-33-5 |
Chemical formula | MoS2 |
Molecular weight | 160.07 g/mol |
Bandgap | 1.23 eV [1] |
Synonyms | Molybdenum sulfide, Molybdenum disulphide. Molybdenum (IV) sulfide |
Classification / Family | Transition metal dichalcogenides (TMDCs), 2D Semiconductor Materials, Nano-electronics, Nano-photonics, Materials science |
Product Details
Form | Single Crystal |
Preparation | Synthetic - Chemical Vapour Transport (CVT) |
Purity | ≥ 99.999% |
Structure | Hexagonal |
Electronic properties | 2D Semiconductor |
Melting point | 2375 °C (lit.) |
Colour | Black / Dark brown |
Chemical Structure

Applications
MoS2 has an indirect band-gap of 1.23 eV for bulk single crystal or multi-layer films. However, single atomic layers have a direct band-gap of 1.9 eV. Due to its layered structure, MoS2 is highly anisotropic with excellent nonlinear optical properties. It is widely used as a high-performance lubricant.
As a result of its direct band-gap, single-layer MoS2 has received much interest for applications in electronic and optoelectronic devices (such as transistors, photodetectors, photovoltaics and light-emitting diodes). It is also being explored for applications in photonics, and can be combined with other TMDCs to create advanced heterostructured devices.
Synthesis
Molybdenum disulfide MoS2 is manufactured via chemical vapour transport (CVT) crystallisation, with purities of over 99.999% achieved.
Usage
Molybdenum disulfide MoS2 is used to create monolayer and few-layer MoS2 by mechanical or liquid exfoliation. Single crystals can also be studied using a range of microscopies (including AFM and TEM).
Viscoelastic transfer using PDMS
Further information
More information on the properties, applications, processing and range of products available for molybdenum disulfide (MoS2) is described on the MoS2 page.
MSDS Documentation
Molybdenum disulfide crystal MSDS sheet
Pricing
Size | Product code | Size description* | Quantity (EA) | Price |
Small | M2107A10 | 10 mm*10 mm | 1 | £357.00 |
Medium | M2107A15 | 15 mm*15 mm | 1 | £637.00 |
Large** | M2107A20 | 20 mm*20 mm | 1 | £861.00 |
* Typical representative size, areas/dimensions may vary
** Item with a lead time of 2-3 weeks, please contact for more information
Literature and Reviews
- Few-Layer MoS2: A Promising Layered Semiconductor, R. Ganatra et al., ACS Nano, 8 (5), 4074–4099 (2014); DOI: 10.1021/nn405938z.
- Atomically Thin MoS2: A New Direct-Gap Semiconductor, K. Mak et al., Phys. Rev. Lett. 105, 136805 (2015); DOI: 10.1103/PhysRevLett.105.136805.
- Shape-Uniform, High-Quality Monolayered MoS2 Crystals for Gate-Tunable Photoluminescence, X. Zhang et al., ACS Appl. Mater. Interfaces, 9, 42121−42130 (2017); DOI: 10.1021/acsami.7b14189.
- Photoluminescence from Chemically Exfoliated MoS2, G. Eda et al., Nano Lett., 11, 5111–5116 (2011); DOI: 10.1021/nl201874w.
- Fabrication of Single- and Multilayer MoS2 Film-Based Field-Effect Transistors for Sensing NO at Room Temperature, H. Li et al, Small, 8 (1), 63–67 (2012); DOI: 10.1002/smll.201101016.
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.
About Ossila Founded in 2009 by organic electronics research scientists, Ossila aims to provide the components, equipment, and materials to enable intelligent and efficient scientific research and discovery. Over a decade on, we're proud to supply our products to over 1000 different institutions in over 80 countries globally. With decades of academic and industrial experience in developing organic and thin-film LEDs, photovoltaics, and FETs, we know how long it takes to establish a reliable and efficient device fabrication and testing process. As such, we have developed coherent packages of products and services - enabling researchers to jump-start their organic electronics development program. The Ossila Guarantee Free Worldwide Shipping Eligible orders ship free to anywhere in the world Fast Secure Dispatch Rapid dispatch on in-stock items via secure tracked courier services Quality Assured Backed up by our free two year warranty on all equipment Clear Upfront Pricing Clear pricing in over 30 currencies with no hidden costs Large Order Discounts Save 8% on orders over $10,300.00 and 10% on orders over $12,900.00 Expert Support Our in-house scientists and engineers are always ready to help Trusted Worldwide Great products and service. Have already recommended to many people. Dr. Gregory Welch, University of Calgary Wonderful company with reasonably priced products and so customer-friendly! Shahriar Anwar, Arizona State University The Ossila Team Prof. David Lidzey - Chairman As professor of physics at the University of Sheffield, Prof. David Lidzey heads the university’s Electronic and Photonic Molecular Materials research group (EPMM). During his career, David has worked in both academic and technical environments, with his main areas of research including hybrid organic-inorganic semiconductor materials and devices, organic photonic devices and structures and solution processed photovoltaic devices. Throughout his academic career, he has authored over 220 peer-reviewed papers. Dr. James Kingsley - Managing Director James is a co-founder and managing director of Ossila. With a PhD in quantum mechanics/nanotech and over 12 years’ experience in organic electronics, his work on the fabrication throughput of organic photovoltaics led to the formation of Ossila and the establishment of a strong guiding ethos: to speed up the pace of scientific discovery. James is particularly interested in developing innovative equipment and improving the accessibility of new materials for solution-processable photovoltaics and hybrid organic-inorganic devices. Dr. Alastair Buckley - Technical Director Alastair is a lecturer of Physics at the University of Sheffield, specialising in organic electronics and photonics. He is also a member of the EPMM research group with a focus on understanding and applying the intrinsic advantages of functional organic materials to a range of optoelectronic devices. Alastair’s experience has not been gained solely in academia; he previously led the R&D team at MicroEmissive Displays and therefore has extensive technical experience in OLED displays. He is also the editor and contributor of "Organic Light-Emitting Diodes" by Elsevier. Our Research Scientists Our research scientists and product developers have significant experience in the synthesis and processing of materials and the fabrication and testing of devices. The vision behind Ossila is to share this experience with academic and industrial researchers alike, and to make their research more efficient. By providing products and services that take the hard work out of the device fabrication process, and the equipment to enable accurate, rapid testing, we can free scientists to focus on what they do best - science. Customer Care Team The customer care team is responsible for the customer journey at Ossila. From creating and providing quotes, through to procurement and inventory management, the customer care team is devoted to providing first class customer service. The general day to day responsibilities of a customer care team member involves processing customers orders and price queries, answering customer enquiries, arranging the shipment of parcels and notifying customers of updates on their orders. Collaborations and Partnerships Please contact the customer care team for all enquires, including technical questions about Ossila products or for advice on fabrication and measurement processes. Location and Facilities Ossila is based at the Solpro Business Park in Attercliffe, Sheffield. We operate a purpose-built synthetic chemistry and device testing laboratory on site, where all of our high-purity, batch-specific polymers and other formulations are made. This is complemented by a dedicated suite of thin-film and organic electronics testing and analysis tools within the device fabrication cluster housed in a class 1000 cleanroom in the EPSRC National Epitaxy Facility in Sheffield. All our electronic equipment is manufactured on-site.