品牌咨询
联系方式
公司地址
苏州工业园区生物纳米园A4#216
联系电话
4000-520-616 / 18915418616
传真号码
0512-67156496
电子邮箱
info@ebiomall.com
公司网址
https://www.ebiomall.com

Ossila/Molybdenum Tungsten Disulfide Powder | MoWS2/1 g/M2141C1

价格
¥5420.00
货号:M2141C1
浏览量:127
品牌:Ossila
服务
全国联保
正品保证
正规发票
签订合同
商品描述

Molybdenum tungsten disulfide (MoWS2) is a TMDC alloy. Alloying 2D TMDCs is an effective way of practically modulating the band gap. This is because alloys have good thermodynamic stability at room temperature.

Like MoS2 and WS2, MoWS2 has a hexagonal crystal structure, and bulk alloys are formed by stacking monolayer alloy together via van der Waals interactions. Each  monolayer contains one MoW plane sandwiched by two S planes, represented as an S-MoW-S layer.

General Information

CAS number109657-36-5
Chemical formulaMoWS2
Molecular weight 204.01 g/mol
Bandgap ~1.90 eV [1]
Classification / FamilyTransition metal dichalcogenides (TMDCs) alloy, 2D semiconductor materials, Nano-electronics, Nano-photonics, Materials science

Product Details

FormPowder
PreparationSynthetic - Chemical Vapour Transport (CVT)
Purity≥ 99.995%
StructureHexagonal
Electronic properties2D Semiconductor
Melting pointn/a
AppearanceBlack powder

Chemical Structure

Molybdenum tungsten disulfide structure
The crystal structure of molybdenum tungsten disulfide (MoWS2)

Applications

With a tunable band gap, band edge position, and carriers’ effective mass, thin-layer nanosheets of MoWS2 have applications in electrochemistry and possess superior hydrogen evolution reaction performance. It has also been used in the development of high-performance optical switching, Q-switching, mode-locking, optical limiting, and optoelectronic devices.

Synthesis

Molybdenum tungsten disulfide powder is obtained via the CVT method, with purity typically in excess of 99.995%.

Usage

Molybdenum tungsten disulfide powder is generally used to prepare MoWS2 quantum dot solutions and nano-platelets by liquid exfoliation assisted by sonication. High-purity MoWS2 powder can also be used in CV deposition to prepare high-quality monolayer films.

MSDS Documentation

Molybdenum tungsten disulfide MSDSMolybdenum tungsten disulfide powder MSDS sheet

Pricing

Product CodeQuantityPrice
M2141C1500 mg£169.00
M2141C11 g£271.00

Literature and Reviews

  1. Towards band structure and band offset engineering of monolayer Mo(1−x)W(x)S2 via Strain, J.-S. Kim et al, 2D Mater. 5, 015008 (2018); doi: 10.1088/2053-1583/aa8e71.
  2. Experimental and First-Principles Investigation of MoWS2 with High Hydrogen Evolution Performance, H. Li et al., ACS Appl. Mater. Interfaces 2016, 8, 29442−29451; DOI: 10.1021/acsami.6b09620.
  3. Ordered and Disordered Phases in Mo1−xWxS2 Monolayer, W. Tan et al., Sci. Rep., 7:15124 (2017); DOI:10.1038/s41598-017-15286-9.
  4. Substrate-free layer-number identification of two-dimensional materials: A case of Mo0.5W0.5S2 alloy, X. Qiao et al., Appl. Phys. Lett. 106, 223102 (2015); doi: 10.1063/1.4921911.
  5. High pressure Raman study of layered Mo0.5W0.5S2 ternary compound, J. Kim et al., 2D Mater. 3, 025003 (2016); doi: 10.1088/2053-1583/3/2/025003.
  6. Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlledmultilayer, J. Song et al., Nat. Commun., 6:7817 (2015); DOI: 10.1038/ncomms8817.
  7. Monolayers of WxMo1-xS2 alloy heterostructure with in-plane composition variations, S. Zheng et al., Appl. Phys. Lett. 106, 063113 (2015); doi: 10.1063/1.4908256.
  8. Generation of microsecond pulses at 1645 nm with MoWS2 alloy, Z. Yan et al., Opt. Mater., 84, 371–374 (2018); doi: 10.1016/j.optmat.2018.07.042.
  9. Nonlinear optical responses in two-dimensional transition metal dichalcogenide multilayer: WS2, WSe2, MoS2 and Mo0.5W0.5S2, S. Bikorimana et al., Opt. Express, 24 (18) 20685-20695 (2016); doi: 10.1364/OE.24.020685.

To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.

About Ossila Founded in 2009 by organic electronics research scientists, Ossila aims to provide the components, equipment, and materials to enable intelligent and efficient scientific research and discovery. Over a decade on, we're proud to supply our products to over 1000 different institutions in over 80 countries globally. With decades of academic and industrial experience in developing organic and thin-film LEDs, photovoltaics, and FETs, we know how long it takes to establish a reliable and efficient device fabrication and testing process. As such, we have developed coherent packages of products and services - enabling researchers to jump-start their organic electronics development program. The Ossila Guarantee Free Worldwide Shipping Eligible orders ship free to anywhere in the world Fast Secure Dispatch Rapid dispatch on in-stock items via secure tracked courier services Quality Assured Backed up by our free two year warranty on all equipment Clear Upfront Pricing Clear pricing in over 30 currencies with no hidden costs Large Order Discounts Save 8% on orders over $10,300.00 and 10% on orders over $12,900.00 Expert Support Our in-house scientists and engineers are always ready to help Trusted Worldwide Great products and service. Have already recommended to many people. Dr. Gregory Welch, University of Calgary Wonderful company with reasonably priced products and so customer-friendly! Shahriar Anwar, Arizona State University The Ossila Team Prof. David Lidzey - Chairman As professor of physics at the University of Sheffield, Prof. David Lidzey heads the university’s Electronic and Photonic Molecular Materials research group (EPMM). During his career, David has worked in both academic and technical environments, with his main areas of research including hybrid organic-inorganic semiconductor materials and devices, organic photonic devices and structures and solution processed photovoltaic devices. Throughout his academic career, he has authored over 220 peer-reviewed papers. Dr. James Kingsley - Managing Director James is a co-founder and managing director of Ossila. With a PhD in quantum mechanics/nanotech and over 12 years’ experience in organic electronics, his work on the fabrication throughput of organic photovoltaics led to the formation of Ossila and the establishment of a strong guiding ethos: to speed up the pace of scientific discovery. James is particularly interested in developing innovative equipment and improving the accessibility of new materials for solution-processable photovoltaics and hybrid organic-inorganic devices. Dr. Alastair Buckley - Technical Director Alastair is a lecturer of Physics at the University of Sheffield, specialising in organic electronics and photonics. He is also a member of the EPMM research group with a focus on understanding and applying the intrinsic advantages of functional organic materials to a range of optoelectronic devices. Alastair’s experience has not been gained solely in academia; he previously led the R&D team at MicroEmissive Displays and therefore has extensive technical experience in OLED displays. He is also the editor and contributor of "Organic Light-Emitting Diodes" by Elsevier. Our Research Scientists Our research scientists and product developers have significant experience in the synthesis and processing of materials and the fabrication and testing of devices. The vision behind Ossila is to share this experience with academic and industrial researchers alike, and to make their research more efficient. By providing products and services that take the hard work out of the device fabrication process, and the equipment to enable accurate, rapid testing, we can free scientists to focus on what they do best - science. Customer Care Team The customer care team is responsible for the customer journey at Ossila. From creating and providing quotes, through to procurement and inventory management, the customer care team is devoted to providing first class customer service. The general day to day responsibilities of a customer care team member involves processing customers orders and price queries, answering customer enquiries, arranging the shipment of parcels and notifying customers of updates on their orders. Collaborations and Partnerships Please contact the customer care team for all enquires, including technical questions about Ossila products or for advice on fabrication and measurement processes. Location and Facilities Ossila is based at the Solpro Business Park in Attercliffe, Sheffield. We operate a purpose-built synthetic chemistry and device testing laboratory on site, where all of our high-purity, batch-specific polymers and other formulations are made. This is complemented by a dedicated suite of thin-film and organic electronics testing and analysis tools within the device fabrication cluster housed in a class 1000 cleanroom in the EPSRC National Epitaxy Facility in Sheffield. All our electronic equipment is manufactured on-site.