品牌咨询
联系方式
公司地址
苏州工业园区生物纳米园A4#216
联系电话
4000-520-616 / 18915418616
传真号码
0512-67156496
电子邮箱
info@ebiomall.com
公司网址
https://www.ebiomall.com

Megazyme/Fructan Assay Kit/K-FRUC/100 assays per kit

作者: 时间:2024-11-15 点击量:

The Fructan test kit is suitable forthe specific measurement and analysis of fructan in plant extracts and food products containing starch, sucrose and other sugars.

Measurement of total starch in cereal products by amyloglucosidase-alpha-amylase method: collaborative study.

McCleary, B. V., Gibson, T. S. & Mugford, D. C. (1997). Journal of AOAC International, 80, 571-579. Link to Article Read Abstract An American Association of Cereal Chemists/AOAC collaborative study was conducted to evaluate the accuracy and reliability of an enzyme assay kit procedure for measurement of total starch in a range of cereal grains and products. The flour sample is incubated at 95 degrees C with thermostable alpha-amylase to catalyze the hydrolysis of starch to maltodextrins, the pH of the slurry is adjusted, and the slurry is treated with a highly purified amyloglucosidase to quantitatively hydrolyze the dextrins to glucose. Glucose is measured with glucose oxidase-peroxidase reagent. Thirty-two collaborators were sent 16 homogeneous test samples as 8 blind duplicates. These samples included chicken feed pellets, white bread, green peas, high-amylose maize starch, white wheat flour, wheat starch, oat bran, and spaghetti. All samples were analyzed by the standard procedure as detailed above; 4 samples (high-amylose maize starch and wheat starch) were also analyzed by a method that requires the samples to be cooked first in dimethyl sulfoxide (DMSO). Relative standard deviations for repeatability (RSD(r)) ranged from 2.1 to 3.9%, and relative standard deviations for reproducibility (RSD(R)) ranged from 2.9 to 5.7%. The RSD(R) value for high amylose maize starch analyzed by the standard (non-DMSO) procedure was 5.7%; the value was reduced to 2.9% when the DMSO procedure was used, and the determined starch values increased from 86.9 to 97.2%.

Measurement of total fructan in foods by enzymatic/spectrophotometric method: Collaborative study.

McCleary, B. V., Murphy, A. & Mugford, D. C. (2000). Journal of AOAC International, 83(2), 356-364. Link to Article Read Abstract An AOAC collaborative study was conducted to evaluate the accuracy and reliability of an enzyme assay kit procedure for measuring oligofructans and fructan polysaccharide (inulins) in mixed materials and food products. The sample is extracted with hot water, and an aliquot is treated with a mixture of sucrase (a specific sucrose-degrading enzyme), α-amylase, pullulanase, and maltase to hydrolyze sucrose to glucose and fructose, and starch to glucose. These reducing sugars are then reduced to sugar alcohols by treatment with alkaline borohydride solution. The solution is neutralized, and excess borohydride is removed with dilute acetic acid. The fructan is hydrolyzed to fructose and glucose using a mixture of purified exo- and endo-inulinanases (fructanase mixture). The reducing sugars produced (fructose and glucose) are measured with a spectrophotometer after reaction with para-hydroxybenzoic acid hydrazide. The samples analyzed included pure fructan, chocolate, low-fat spread, milk powder, vitamin tablets, onion powder, Jerusalem artichoke flour, wheat stalks, and a sucrose/cellulose control flour. Repeatability relative standard deviations ranged from 2.3 to 7.3%; reproducibility relative standard deviations ranged from 5.0 to 10.8%.

Measurement of carbohydrates in grain, feed and food.

McCleary, B. V., Charnock, S. J., Rossiter, P. C., O’Shea, M. F., Power, A. M. & Lloyd, R. M. (2006). Journal of the Science of Food and Agriculture, 86(11), 1648-1661. Link to Article Read Abstract Procedures for the measurement of starch, starch damage (gelatinised starch), resistant starch and the amylose/amylopectin content of starch, β-glucan, fructan, glucomannan and galactosyl-sucrose oligosaccharides (raffinose, stachyose and verbascose) in plant material, animal feeds and foods are described. Most of these methods have been successfully subjected to interlaboratory evaluation. All methods are based on the use of enzymes either purified by conventional chromatography or produced using molecular biology techniques. Such methods allow specific, accurate and reliable quantification of a particular component. Problems in calculating the actual weight of galactosyl-sucrose oligosaccharides in test samples are discussed in detail.

Physical, microscopic and chemical characterisation of industrial rye and wheat brans from the Nordic countries.

Kamal-Eldin, A., Lærke, H. N., Knudsen, K. E. B., Lampi, A. M., Piironen, V., Adlercreutz, H., Katina, K., Poutanen, K. & Aman, P. (2009). Food & Nutrition Research, 53. Link to Article Read Abstract Background: Epidemiological studies show inverse relationship between intake of wholegrain cereals and several chronic diseases. Components and mechanisms behind possible protective effects of wholegrain cereals are poorly understood.Objective: To characterise commercial rye bran preparations, compared to wheat bran, regarding structure and content of nutrients as well as a number of presumably bioactive compounds. Design: Six different rye brans from Sweden, Denmark and Finland were analysed and compared with two wheat brans regarding colour, particle size distribution, microscopic structures and chemical composition including proximal components, vitamins, minerals and bioactive compounds.Results: Rye brans were generally greener in colour and smaller in particle size than wheat brans. The rye brans varied considerably in their starch content (13.2–28.3%), which reflected variable inclusion of the starchy endosperm. Although rye and wheat brans contained comparable levels of total dietary fibre, they differed in the relative proportions of fibre components (i.e. arabinoxylan, β-glucan, cellulose, fructan and Klason lignin). Generally, rye brans contained less cellulose and more β-glucan and fructan than wheat brans. Within small variations, the rye and wheat brans were comparable regarding the contents of tocopherols/tocotrienols, total folate, sterols/stanols, phenolic acids and lignans. Rye bran had less glycine betaine and more alkylresorcinols than wheat brans. Conclusions: The observed variation in the chemical composition of industrially produced rye brans calls for the need of standardisation of this commodity, especially when used as a functional ingredient in foods.

Waxy endosperm accompanies increased fat and saccharide contents in bread wheat (Triticum aestivum) grain.

Yasui, T. & Ashida, K. (2011). Journal of Cereal Science, 53(1), 104-111. Link to Article Read Abstract The contents of fat, starch, pentosan, fructan, β-glucan and several mono- and oligosaccharides in grain were evaluated to find out the possible effects of the Wx-D1 gene of bread wheat using two sets of near-isogenic waxy and non-waxy lines and two low-amylose mutant lines with a common genetic background of Kanto 107. These materials have two non-functional Wx-A1b and Wx-B1b alleles in common. Waxy near-isogenic lines with a non-functional Wx-D1d allele showed consistently increased contents of fat, total fructan, β-glucan, glucose, fructose, sucrose, 1-kestose, 6-kestose, neokestose, nystose and bifurcose compared with non-waxy lines with a functional Wx-D1a allele throughout three growing/harvest seasons. Starch and total pentosan contents were inconsistently influenced by the allelic status of the Wx-D1 locus, while water-soluble pentosan and raffinose contents were not affected. The compositional changes of a low-amylose mutant line with an almost non-functional Wx-D1f allele were closely similar to those of waxy near-isogenic lines, while significantly different changes were barely observed in another low-amylose mutant line with a partly functional Wx-D1g allele in two seasons. These results showed that the Wx-D1 gene has pleiotropic effects on the fat and saccharide contents of bread wheat grain.

Characterization and in vitro immunomodulatory screening of fructo-oligosaccharides of Asparagus racemosus Willd.

Thakur, M., Connellan, P., Deseo, M. A., Morris, C., Praznik, W., Loeppert, R. & Dixit, V. K. (2012). International Journal of Biological Macromolecules, 50(1), 77-81. Link to Article Read Abstract Asparagus racemosus Linn. (Fam. Liliaceae) is an ethno-pharmacologically acclaimed Ayurvedic medicinal plant. In the present study, aqueous extract of A. racemosus (ARC) was fractionated and screened for the polysaccharide fraction (ARP). The characterization was done by enzymatic, Size Exclusion, gas chromatography with flame ionization detector (GC–FID), high pressure anion exchange chromatography (HPAEC) and thin layer chromatographic analyses. Phyto-chemical evaluation confirmed the presence of 26.7% of 2 → 1 linked fructo-oligosaccharides (FOS). They have a degree of polymerization (DP) of nearly 7–8. Cytotoxicity evaluation on P388 cell lines was consistent with low cytotoxicity of the extracts. In vitro Natural Killer (NK) cell activity was evaluated using human peripheral blood mononuclear cells (PBMC) isolated from whole blood on a ficoll-hypaque density gradient. K562 a myeloid leukemia cell line, were used as target cells. ARC, tested over the range 0.2–50 μg/ml, showed a dose-related stimulation of NK cell activity with a peak increase of 16.9 ± 4.4% at 5.6 μg/ml. However, ARP demonstrated a higher stimulatory activity of 51.8 ± 1.2% at 25 μg/ml. The results indicate that the FOS from A. racemosus potentiates the NK cell activity and this could be an important mechanism underpinning the ‘Rasayana’ properties of this plant.

Steam‐girdling of barley (Hordeum vulgare) leaves leads to carbohydrate accumulation and accelerated leaf senescence, facilitating transcriptomic analysis of senescence‐associated genes.

Parrott, D. L., McInnerney, K., Feller, U. & Fischer, A. M. (2007). New Phytologist, 176(1), 56-69. Link to Article Read Abstract • Leaf senescence can be described as the dismantling of cellular components during a specific time interval before cell death. This has the effect of remobilizing N in the form of amino acids that can be relocalized to developing seeds. High levels of carbohydrates have previously been shown to promote the onset of the senescence process.• Carbohydrate accumulation in barley (Hordeum vulgare) plants was induced experimentally by steam-girdling at the leaf base, occluding the phloem, and gene regulation under these conditions was investigated using the Affymetrix Barley GeneChip array and quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR).• Transcript levels of plastidial (aminopeptidases, cnd41) and vacuolar (thiol and serine) proteases clearly increase in girdled leaves. Of special interest are cnd41, a plastidial aspartyl peptidase that has been implicated in Rubisco degradation in tobacco; and cp-mIII, a highly upregulated carboxypeptidase. SAG12, hexokinases and other senescence-specific genes are also upregulated under these conditions.• Applying a genomic approach to the innovative experimental system described here significantly enhances our knowledge of leaf proteolysis and whole-plant N recycling.

Contents of dietary fibre components and their relation to associated bioactive components in whole grain wheat samples from the HEALTHGRAIN diversity Screen.

Andersson, A. A. M., Andersson, R., Piironen, V., Lampi, A. M., Nyström, L., Boros, D., Fraś, A., Gebruers, K., Courtin, C. M., Delcour, J. A., Rakszegi, M., Bedo, Z., Ward, J. L., Shewry, P. R. & man, P. (2013). Food Chemistry, 136(3-4), 1243-1248. Link to Article Read Abstract A large and diverse material collection of whole grain wheat samples (n = 129) was analysed for total dietary fibre (TDF) content and composition, including fructan (11.5–15.5%). Correlations between the dietary fibre components, associated bioactive components (e.g. tocols, sterols, phenolic acids and folates) and agronomic properties previously determined on the same samples were found with multivariate analysis (PCA). Samples from the same countries had similar characteristics. The first PC described variation in components concentrated in the starchy endosperm (e.g. starch, β-glucan and fructan) and the dietary fibre components concentrated in the bran (e.g. TDF, arabinoxylan and cellulose). The second PC described the variation in kernel weight and other bran components such as alkylresorcinols, tocols and sterols. Interestingly, there was no correlation among these different groups of bran components, which reflected their concentration in different bran tissues. The results are of importance for plant breeders who wish to develop varieties with health-promoting effects.

Distribution and characterisation of fructan in wheat milling fractions.

Haskå, L., Nyman, M. & Andersson, R. (2008). Journal of Cereal Science, 48(3), 768-774. Link to Article Read Abstract Structure and health effects of inulin-type fructans have been extensively studied, while less is known about the properties of the graminan-type fructans in wheat. Arabinoxylan (AX) is another important indigestible component in cereal grains, which may have beneficial health effects. In this study, the fructan content in milling fractions of two wheat cultivars was determined and related to ash, dietary fibre and AX contents. The molecular weight distribution of the fructans was analysed with HPAEC-PAD and MALDI-TOF MS using 1H NMR and enzymatic hydrolysis for identification of fructans. The fructan content (g/100 g) ranged from 1.5 ± 0.2 in flour to 3.6 ± 0.5 in shorts and 3.7 ± 0.3 in bran. A correlation was found between fructan content and dietary fibre content (r = 0.93, P

Comparison of a colorimetric and a high‐performance liquid chromatography method for the determination of fructan in pasture grasses for horses.

Longland, A. C., Dhanoa, M. S. & Harris, P. A. (2012). Journal of the Science of Food and Agriculture, 92(9), 1878-1885. Link to Article Read Abstract BACKGROUND: Pasture (fresh or conserved as hay/haylage) forms the basis of most equid diets and contains varying amounts (0 to ≥ 200 g kg-1 dry matter (DM) or more) of fructans. Over-consumption of fructan is associated with the onset of laminitis in equids, an agonizing condition that may necessitate euthanasia. To enable appropriate dietary management of animals susceptible to laminitis, it is essential that fructans can be properly quantified in fresh and conserved pasture. For research purposes, fructans are frequently quantified by high-performance liquid chromatography (HPLC), but these methods are costly for routine screening. However, an inexpensive colorimetric method for measuring fructans in human foods is commercially available. The aim here was to determine the suitability of the commercially available colorimetric method for determining the fructan content of pasture grasses for horses.RESULTS: Pasture grasses (Phleum pretense, Festuca rubra, Dactylis glomerata, Lolium perenne) managed for grazing (sampled from April to November) and a further set managed for conservation (sampled in July) were analysed for fructan content by HPLC and the colorimetric technique. HPLC values ranged from 83 to 299 g fructan kg-1 DM (mean 154); corresponding colorimetric values were 5-238 g fructan kg-1 DM (mean 82). Discrepancies in values between the two methods varied with time of sampling and plant species. Comparison of selected samples before and after incubation with the fructan hydrolases used in the colorimetric method revealed incomplete fructan hydrolysis from the pasture grasses, resulting in underestimates of their fructan content.CONCLUSION: The colorimetric technique was not a reliable substitute for HPLC to quantify the fructan content of pasture grasses.

Relationship of Grain Fructan Content to Degree of Polymerisation in Different Barleys.

Nemeth, C., Andersson, A. A. M., Andersson, R., Mangelsen, E., Sun, C. & Åman, P. (2014). Food and Nutrition Sciences, 2014, 5(6), 581-589. Link to Article Read Abstract Fructans are important in the survival of plants and also valuable for humans as potentially health promoting food ingredients. In this study fructan content and composition were determined in grains of 20 barley breeding lines and cultivars with a wide variation in chemical composition, morphology and country of origin, grown at one site in Chile. There was significant genotypic variation in grain fructan content ranging from 0.9% to 4.2% of grain dry weight. Fructan degree of polymerisation (DP) was analysed using high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Changes in the distribution of different chain lengths and the pattern of structures of fructan were detected with increasing amount of fructan in the different barleys. A positive correlation was found between fructan content and the relative amount of long chain fructan (DP > 9) (r = 0.54, p = 0.021). Our results provide a basis for selecting promising barley lines and cultivars for further research on fructan in barley breeding with the aim to produce healthy food products.

Chain length of inulin affects its degradation and the microbiota in the gastrointestinal tract of weaned piglets after a short-term dietary application.

Paßlack, N., Al-Samman, M., Vahjen, W., Männer, K. & Zentek, J. (2012). Livestock Science, 149(1-2), 128-136. Link to Article Read Abstract Dietary inulin can affect the composition and metabolic activity of the gastrointestinal microbiota in piglets. To investigate whether the chain length of inulin may influence its stability in the gut and the bacterial community, 18 weaned piglets were housed 2 per cage, with 1 female and 1 castrated male animal each. The piglets received a control diet without or with 4% inulin, defined by an average degree of polymerisation (DP) of 31 (short-chain, I31) or 57 (long-chain, I57), with 6 piglets/diet. After a short feeding period of 6 d, fructan concentrations, selected bacterial groups, lactic acid, short-chain fatty acid concentrations, and the pH were determined in the digesta of different segments of the gastrointestinal tract. The results indicated that differences in the microbial degradation of inulin were depending on the DP. Compared to the short-chain inulin, the concentrations of the long-chain inulin were numerically greater in the small intestine and caecum, and greater in the digesta of the ascending colon. Differences were also observed in the bacterial composition of the digesta, showing greater cell numbers of enterococci (P=0.029), bifidobacteria (P=0.029), and Lactobacillus mucosae (P=0.028) in the ileum in group I57 compared to group I31. However, most bacteria tended to be numerically reduced in the ileum in group I31 compared to both control and I57 groups. Minor effects were observed in the ascending colon: L. reuteri and L. amylovorus were decreased in group I57 compared to the control group (P=0.031 and 0.034, respectively), and L. mucosae was decreased in group I31 compared to the control animals (P=0.029). The concentrations of bacterial metabolites were distinctively changed in the large intestine of the piglets fed inulin. The pH was lower in the rectum contents in group I57 compared to the control piglets (P=0.026), but lactic acid and total short-chain fatty acid concentrations were not affected. The molar ratios of propionic acid increased in the caecal contents (P=0.040) and in both, the ascending and descending colonic digesta (P=0.017 and 0.013, respectively) in group I57 compared to the control group, while acetic acid decreased (PPP=0.011, respectively) in the digesta of the ascending and descending colon in group I57. In conclusion, the microbial degradation of inulin was dependent on its chain length. Long-chain inulin affected the microbial fermentation more pronounced compared to short-chain inulin. The effects were already observed after 6 d, a relatively short application period, indicating that inulin may be used specifically during the sensitive post-weaning period for piglets.

How does the preparation of rye porridge affect molecular weight distribution of extractable dietary fibers?

Rakha, A., Åman, P. & Andersson, R. (2011). International Journal of Molecular Sciences, 12(5), 3381-3393. Link to Article Read Abstract Extractable dietary fiber (DF) plays an important role in nutrition. This study on porridge making with whole grain rye investigated the effect of rest time of flour slurries at room temperature before cooking and amount of flour and salt in the recipe on the content of DF components and molecular weight distribution of extractable fructan, mixed linkage (1→3)(1→4)-β-D-glucan (β-glucan) and arabinoxylan (AX) in the porridge. The content of total DF was increased (from about 20% to 23% of dry matter) during porridge making due to formation of insoluble resistant starch. A small but significant increase in the extractability of β-glucan (P = 0.016) and AX (P = 0.002) due to rest time was also noted. The molecular weight of extractable fructan and AX remained stable during porridge making. However, incubation of the rye flour slurries at increased temperature resulted in a significant decrease in extractable AX molecular weight. The molecular weight of extractable β-glucan decreased greatly during a rest time before cooking, most likely by the action of endogenous enzymes. The amount of salt and flour used in the recipe had small but significant effects on the molecular weight of β-glucan. These results show that whole grain rye porridge made without a rest time before cooking contains extractable DF components maintaining high molecular weights. High molecular weight is most likely of nutritional importance. Validation of Methods \"Certification\"

AACC Method 32-32.01

\"Certification\"

AOAC Method 999.03

\"Certification\"

CODEX Method Type III 

Colourimetric method for the determination of Fructan in plant products, foodstuffs and other materialsPrinciple: (sucrase)(1) Sucrose + H2O → D-glucose + D-fructose (β-amylase + maltase + pullulanase)(2) Starch + maltosaccharides + H2O → D-glucose (borohydride)(3) D-Glucose + D-fructose → D-sorbitol + D-mannitol (non-reducing) (exo-inulinase + endo-inulinase)(4) Fructan + H2O → D-glucose + D-fructose (100°C, 6 min)(5) D-Glucose + D-fructose + PAHBAH → PAHBAH colour complex

Kit size: 100 assaysMethod: Spectrophotometric at 410 nmTotal assay time: ~ 90 minDetection limit: 1-100% of sample weightApplication examples: Flours, plant materials (e.g. onion), food products and other materialsMethod recognition: AOAC (Method 999.03), AACC (Method 32-32.01) and CODEX (Type III Method)

    Advantages

    • Very cost effective
    • All kit reagents stable for > 2 years after preparation
    • Unaffected by high sucrose / reducing sugar concentrations
    • Fructan kits are only available from Megazyme
    • Simple format
    • Mega-Calc™ software tool is available from our website for hassle-free raw data processing
    • Standard included

      >>> 更多资讯详情请访问蚂蚁淘商城

      Megazyme商品列表
      图片/货号 产品名/品牌 价格/货期 操作